565 lines
24 KiB
Python
565 lines
24 KiB
Python
import bz2
|
|
import pickle
|
|
import time
|
|
import shutil
|
|
import os
|
|
import sys
|
|
import hashlib
|
|
import fnmatch
|
|
from datetime import datetime
|
|
|
|
import pytest
|
|
import vtk
|
|
import h5py
|
|
import numpy as np
|
|
|
|
from damask import Result
|
|
from damask import Orientation
|
|
from damask import VTK
|
|
from damask import tensor
|
|
from damask import mechanics
|
|
from damask import grid_filters
|
|
|
|
|
|
@pytest.fixture
|
|
def default(tmp_path,ref_path):
|
|
"""Small Result file in temp location for modification."""
|
|
fname = '12grains6x7x8_tensionY.hdf5'
|
|
shutil.copy(ref_path/fname,tmp_path)
|
|
return Result(tmp_path/fname).view(times=20.0)
|
|
|
|
@pytest.fixture
|
|
def single_phase(tmp_path,ref_path):
|
|
"""Single phase Result file in temp location for modification."""
|
|
fname = '6grains6x7x8_single_phase_tensionY.hdf5'
|
|
shutil.copy(ref_path/fname,tmp_path)
|
|
return Result(tmp_path/fname)
|
|
|
|
@pytest.fixture
|
|
def ref_path(ref_path_base):
|
|
"""Directory containing reference results."""
|
|
return ref_path_base/'Result'
|
|
|
|
def dict_equal(d1, d2):
|
|
for k in d1:
|
|
if (k not in d2):
|
|
return False
|
|
else:
|
|
if type(d1[k]) is dict:
|
|
return dict_equal(d1[k],d2[k])
|
|
else:
|
|
if not np.allclose(d1[k],d2[k]):
|
|
return False
|
|
return True
|
|
|
|
class TestResult:
|
|
|
|
def test_self_report(self,default):
|
|
print(default)
|
|
|
|
|
|
def test_view_all(self,default):
|
|
a = default.view(increments=True).get('F')
|
|
|
|
assert dict_equal(a,default.view(increments='*').get('F'))
|
|
assert dict_equal(a,default.view(increments=default.increments_in_range(0,np.iinfo(int).max)).get('F'))
|
|
|
|
assert dict_equal(a,default.view(times=True).get('F'))
|
|
assert dict_equal(a,default.view(times='*').get('F'))
|
|
assert dict_equal(a,default.view(times=default.times_in_range(0.0,np.inf)).get('F'))
|
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases','fields']) # ToDo: discuss homogenizations
|
|
def test_view_none(self,default,what):
|
|
n0 = default.view(**{what:False})
|
|
n1 = default.view(**{what:[]})
|
|
|
|
label = 'increments' if what == 'times' else what
|
|
|
|
assert n0.get('F') is n1.get('F') is None and \
|
|
len(n0.visible[label]) == len(n1.visible[label]) == 0
|
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases','fields']) # ToDo: discuss homogenizations
|
|
def test_view_more(self,default,what):
|
|
empty = default.view(**{what:False})
|
|
|
|
a = empty.view_more(**{what:'*'}).get('F')
|
|
b = empty.view_more(**{what:True}).get('F')
|
|
|
|
assert dict_equal(a,b)
|
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases','fields']) # ToDo: discuss homogenizations
|
|
def test_view_less(self,default,what):
|
|
full = default.view(**{what:True})
|
|
|
|
n0 = full.view_less(**{what:'*'})
|
|
n1 = full.view_less(**{what:True})
|
|
|
|
label = 'increments' if what == 'times' else what
|
|
|
|
assert n0.get('F') is n1.get('F') is None and \
|
|
len(n0.visible[label]) == len(n1.visible[label]) == 0
|
|
|
|
def test_add_invalid(self,default):
|
|
default.add_absolute('xxxx')
|
|
|
|
def test_add_absolute(self,default):
|
|
default.add_absolute('F_e')
|
|
in_memory = np.abs(default.place('F_e'))
|
|
in_file = default.place('|F_e|')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('mode',
|
|
['direct',pytest.param('function',marks=pytest.mark.xfail(sys.platform in ['darwin','win32'], reason='n/a'))])
|
|
def test_add_calculation(self,default,tmp_path,mode):
|
|
|
|
if mode == 'direct':
|
|
default.add_calculation('2.0*np.abs(#F#)-1.0','x','-','my notes')
|
|
else:
|
|
with open(tmp_path/'f.py','w') as f:
|
|
f.write("import numpy as np\ndef my_func(field):\n return 2.0*np.abs(field)-1.0\n")
|
|
sys.path.insert(0,str(tmp_path))
|
|
import f
|
|
default.enable_user_function(f.my_func)
|
|
default.add_calculation('my_func(#F#)','x','-','my notes')
|
|
|
|
in_memory = 2.0*np.abs(default.place('F'))-1.0
|
|
in_file = default.place('x')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_calculation_invalid(self,default):
|
|
default.add_calculation('np.linalg.norm(#F#,axis=0)','wrong_dim')
|
|
assert default.get('wrong_dim') is None
|
|
|
|
def test_add_stress_Cauchy(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
in_memory = mechanics.stress_Cauchy(default.place('P'), default.place('F'))
|
|
in_file = default.place('sigma')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_determinant(self,default):
|
|
default.add_determinant('P')
|
|
in_memory = np.linalg.det(default.place('P'))
|
|
in_file = default.place('det(P)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_deviator(self,default):
|
|
default.add_deviator('P')
|
|
in_memory = tensor.deviatoric(default.place('P'))
|
|
in_file = default.place('s_P')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('eigenvalue,function',[('max',np.amax),('min',np.amin)])
|
|
def test_add_eigenvalue(self,default,eigenvalue,function):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_eigenvalue('sigma',eigenvalue)
|
|
in_memory = function(tensor.eigenvalues(default.place('sigma')),axis=1)
|
|
in_file = default.place(f'lambda_{eigenvalue}(sigma)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('eigenvalue,idx',[('max',2),('mid',1),('min',0)])
|
|
def test_add_eigenvector(self,default,eigenvalue,idx):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_eigenvector('sigma',eigenvalue)
|
|
in_memory = tensor.eigenvectors(default.place('sigma'))[:,idx]
|
|
in_file = default.place(f'v_{eigenvalue}(sigma)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('d',[[1,0,0],[0,1,0],[0,0,1]])
|
|
def test_add_IPF_color(self,default,d):
|
|
default.add_IPF_color(d,'O')
|
|
qu = default.place('O')
|
|
crystal_structure = qu.dtype.metadata['lattice']
|
|
c = Orientation(rotation=qu,lattice=crystal_structure)
|
|
in_memory = np.uint8(c.IPF_color(np.array(d))*255)
|
|
in_file = default.place('IPFcolor_({} {} {})'.format(*d))
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_maximum_shear(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_maximum_shear('sigma')
|
|
in_memory = mechanics.maximum_shear(default.place('sigma'))
|
|
in_file = default.place('max_shear(sigma)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_strain(self,default):
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*2.0 - 1.0
|
|
default.add_strain('F',t,m)
|
|
label = f'epsilon_{t}^{m}(F)'
|
|
default.add_equivalent_Mises(label)
|
|
in_memory = mechanics.equivalent_strain_Mises(default.place(label))
|
|
in_file = default.place(label+'_vM')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_stress(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_equivalent_Mises('sigma')
|
|
in_memory = mechanics.equivalent_stress_Mises(default.place('sigma'))
|
|
in_file = default.place('sigma_vM')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_invalid(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_calculation('#sigma#','sigma_y',unit='y')
|
|
default.add_equivalent_Mises('sigma_y')
|
|
assert default.get('sigma_y_vM') is None
|
|
|
|
def test_add_Mises_stress_strain(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_calculation('#sigma#','sigma_y',unit='y')
|
|
default.add_calculation('#sigma#','sigma_x',unit='x')
|
|
default.add_equivalent_Mises('sigma_y',kind='strain')
|
|
default.add_equivalent_Mises('sigma_x',kind='stress')
|
|
assert not np.allclose(default.place('sigma_y_vM'),default.place('sigma_x_vM'))
|
|
|
|
@pytest.mark.parametrize('ord',[1,2])
|
|
@pytest.mark.parametrize('dataset,axis',[('F',(1,2)),('xi_sl',(1,))])
|
|
def test_add_norm(self,default,ord,dataset,axis):
|
|
default.add_norm(dataset,ord)
|
|
in_memory = np.linalg.norm(default.place(dataset),ord=ord,axis=axis,keepdims=True)
|
|
in_file = default.place(f'|{dataset}|_{ord}')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stress_second_Piola_Kirchhoff(self,default):
|
|
default.add_stress_second_Piola_Kirchhoff('P','F')
|
|
in_memory = mechanics.stress_second_Piola_Kirchhoff(default.place('P'),default.place('F'))
|
|
in_file = default.place('S')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('options',[{'uvw':[1,0,0],'with_symmetry':False},
|
|
{'uvw':[1,1,0],'with_symmetry':True},
|
|
{'hkl':[0,1,1],'with_symmetry':True},
|
|
{'hkl':[1,1,1],'with_symmetry':False},
|
|
])
|
|
def test_add_pole(self,default,options):
|
|
default.add_pole(**options)
|
|
rot = default.place('O')
|
|
in_memory = Orientation(rot,lattice=rot.dtype.metadata['lattice']).to_pole(**options)
|
|
brackets = [['[[]','[]]'],'()','⟨⟩','{}'][('hkl' in options)*1+(options['with_symmetry'])*2] # escape fnmatch
|
|
label = 'p^{}{} {} {}{}'.format(brackets[0],
|
|
*(list(options.values())[0]),
|
|
brackets[-1])
|
|
in_file = default.place(label)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_rotation(self,default):
|
|
default.add_rotation('F')
|
|
in_memory = mechanics.rotation(default.place('F')).as_matrix()
|
|
in_file = default.place('R(F)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_spherical(self,default):
|
|
default.add_spherical('P')
|
|
in_memory = tensor.spherical(default.place('P'),False)
|
|
in_file = default.place('p_P')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_strain(self,default):
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*2.0 - 1.0
|
|
default.add_strain('F',t,m)
|
|
label = f'epsilon_{t}^{m}(F)'
|
|
in_memory = mechanics.strain(default.place('F'),t,m)
|
|
in_file = default.place(label)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stretch_right(self,default):
|
|
default.add_stretch_tensor('F','U')
|
|
in_memory = mechanics.stretch_right(default.place('F'))
|
|
in_file = default.place('U(F)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stretch_left(self,default):
|
|
default.add_stretch_tensor('F','V')
|
|
in_memory = mechanics.stretch_left(default.place('F'))
|
|
in_file = default.place('V(F)')
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_invalid_dataset(self,default):
|
|
with pytest.raises(TypeError):
|
|
default.add_calculation('#invalid#*2')
|
|
|
|
def test_add_generic_grid_invalid(self,ref_path):
|
|
result = Result(ref_path/'4grains2x4x3_compressionY.hdf5')
|
|
with pytest.raises(NotImplementedError):
|
|
result.add_curl('F')
|
|
|
|
|
|
@pytest.mark.parametrize('shape',['vector','tensor'])
|
|
def test_add_curl(self,default,shape):
|
|
if shape == 'vector': default.add_calculation('#F#[:,:,0]','x','1','just a vector')
|
|
if shape == 'tensor': default.add_calculation('#F#[:,:,:]','x','1','just a tensor')
|
|
x = default.place('x')
|
|
default.add_curl('x')
|
|
in_file = default.place('curl(x)')
|
|
in_memory = grid_filters.curl(default.size,x.reshape(tuple(default.cells)+x.shape[1:])).reshape(in_file.shape)
|
|
assert (in_file==in_memory).all()
|
|
|
|
@pytest.mark.parametrize('shape',['vector','tensor'])
|
|
def test_add_divergence(self,default,shape):
|
|
if shape == 'vector': default.add_calculation('#F#[:,:,0]','x','1','just a vector')
|
|
if shape == 'tensor': default.add_calculation('#F#[:,:,:]','x','1','just a tensor')
|
|
x = default.place('x')
|
|
default.add_divergence('x')
|
|
in_file = default.place('divergence(x)')
|
|
in_memory = grid_filters.divergence(default.size,x.reshape(tuple(default.cells)+x.shape[1:])).reshape(in_file.shape)
|
|
assert (in_file==in_memory).all()
|
|
|
|
@pytest.mark.parametrize('shape',['scalar','pseudo_scalar','vector'])
|
|
def test_add_gradient(self,default,shape):
|
|
if shape == 'pseudo_scalar': default.add_calculation('#F#[:,0,0:1]','x','1','a pseudo scalar')
|
|
if shape == 'scalar': default.add_calculation('#F#[:,0,0]','x','1','just a scalar')
|
|
if shape == 'vector': default.add_calculation('#F#[:,:,1]','x','1','just a vector')
|
|
x = default.place('x').reshape((np.product(default.cells),-1))
|
|
default.add_gradient('x')
|
|
in_file = default.place('gradient(x)')
|
|
in_memory = grid_filters.gradient(default.size,x.reshape(tuple(default.cells)+x.shape[1:])).reshape(in_file.shape)
|
|
assert (in_file==in_memory).all()
|
|
|
|
@pytest.mark.parametrize('overwrite',['off','on'])
|
|
def test_add_overwrite(self,default,overwrite):
|
|
last = default.view(increments=-1)
|
|
|
|
last.add_stress_Cauchy()
|
|
|
|
created_first = last.place('sigma').dtype.metadata['created']
|
|
created_first = datetime.strptime(created_first,'%Y-%m-%d %H:%M:%S%z')
|
|
|
|
last = last.view(protected=overwrite != 'on')
|
|
|
|
time.sleep(2)
|
|
try:
|
|
last.add_calculation('#sigma#*0.0+311.','sigma','not the Cauchy stress')
|
|
except ValueError:
|
|
pass
|
|
|
|
created_second = last.place('sigma').dtype.metadata['created']
|
|
created_second = datetime.strptime(created_second,'%Y-%m-%d %H:%M:%S%z')
|
|
|
|
if overwrite == 'on':
|
|
assert created_first < created_second and np.allclose(last.place('sigma'),311.)
|
|
else:
|
|
assert created_first == created_second and not np.allclose(last.place('sigma'),311.)
|
|
|
|
@pytest.mark.parametrize('allowed',['off','on'])
|
|
def test_rename(self,default,allowed):
|
|
if allowed == 'on':
|
|
F = default.place('F')
|
|
default = default.view(protected=False)
|
|
default.rename('F','new_name')
|
|
assert np.all(F == default.place('new_name'))
|
|
default = default.view(protected=True)
|
|
|
|
with pytest.raises(PermissionError):
|
|
default.rename('P','another_new_name')
|
|
|
|
@pytest.mark.parametrize('allowed',['off','on'])
|
|
def test_remove(self,default,allowed):
|
|
if allowed == 'on':
|
|
unsafe = default.view(protected=False)
|
|
unsafe.remove('F')
|
|
assert unsafe.get('F') is None
|
|
else:
|
|
with pytest.raises(PermissionError):
|
|
default.remove('F')
|
|
|
|
@pytest.mark.parametrize('mode',['cell','node'])
|
|
def test_coordinates(self,default,mode):
|
|
if mode == 'cell':
|
|
a = grid_filters.coordinates0_point(default.cells,default.size,default.origin)
|
|
b = default.coordinates0_point.reshape(tuple(default.cells)+(3,),order='F')
|
|
elif mode == 'node':
|
|
a = grid_filters.coordinates0_node(default.cells,default.size,default.origin)
|
|
b = default.coordinates0_node.reshape(tuple(default.cells+1)+(3,),order='F')
|
|
assert np.allclose(a,b)
|
|
|
|
@pytest.mark.parametrize('output',['F','*',['P'],['P','F']],ids=range(4))
|
|
@pytest.mark.parametrize('fname',['12grains6x7x8_tensionY.hdf5'],ids=range(1))
|
|
@pytest.mark.parametrize('inc',[4,0],ids=range(2))
|
|
@pytest.mark.xfail(int(vtk.vtkVersion.GetVTKVersion().split('.')[0])<9, reason='missing "Direction" attribute')
|
|
def test_vtk(self,request,tmp_path,ref_path,update,patch_execution_stamp,patch_datetime_now,output,fname,inc):
|
|
result = Result(ref_path/fname).view(increments=inc)
|
|
result.export_VTK(output,target_dir=tmp_path,parallel=False)
|
|
fname = fname.split('.')[0]+f'_inc{(inc if type(inc) == int else inc[0]):0>2}.vti'
|
|
v = VTK.load(tmp_path/fname)
|
|
v.comments = 'n/a'
|
|
v.save(tmp_path/fname,parallel=False)
|
|
with open(tmp_path/fname) as f:
|
|
cur = hashlib.md5(f.read().encode()).hexdigest()
|
|
if update:
|
|
with open((ref_path/'export_VTK'/request.node.name).with_suffix('.md5'),'w') as f:
|
|
f.write(cur+'\n')
|
|
with open((ref_path/'export_VTK'/request.node.name).with_suffix('.md5')) as f:
|
|
assert cur == f.read().strip('\n')
|
|
|
|
@pytest.mark.parametrize('mode',['point','cell'])
|
|
@pytest.mark.parametrize('output',[False,True])
|
|
def test_vtk_marc(self,tmp_path,ref_path,mode,output):
|
|
os.chdir(tmp_path)
|
|
result = Result(ref_path/'check_compile_job1.hdf5')
|
|
result.export_VTK(output,mode)
|
|
|
|
def test_marc_coordinates(self,ref_path):
|
|
result = Result(ref_path/'check_compile_job1.hdf5').view(increments=-1)
|
|
c_n = result.coordinates0_node + result.get('u_n')
|
|
c_p = result.coordinates0_point + result.get('u_p')
|
|
assert len(c_n) > len(c_p)
|
|
|
|
@pytest.mark.parametrize('mode',['point','cell'])
|
|
def test_vtk_mode(self,tmp_path,single_phase,mode):
|
|
os.chdir(tmp_path)
|
|
single_phase.export_VTK(mode=mode)
|
|
|
|
def test_vtk_invalid_mode(self,single_phase):
|
|
with pytest.raises(ValueError):
|
|
single_phase.export_VTK(mode='invalid')
|
|
|
|
def test_vtk_custom_path(self,tmp_path,single_phase):
|
|
export_dir = tmp_path/'export_dir'
|
|
single_phase.export_VTK(mode='point',target_dir=export_dir,parallel=False)
|
|
assert set(os.listdir(export_dir))==set([f'{single_phase.fname.stem}_inc{i:02}.vtp' for i in range(0,40+1,4)])
|
|
|
|
def test_XDMF_datatypes(self,tmp_path,single_phase,update,ref_path):
|
|
for what,shape in {'scalar':(),'vector':(3,),'tensor':(3,3),'matrix':(12,)}.items():
|
|
for dtype in ['f4','f8','i1','i2','i4','i8','u1','u2','u4','u8']:
|
|
single_phase.add_calculation(f"np.ones(np.shape(#F#)[0:1]+{shape},'{dtype}')",f'{what}_{dtype}')
|
|
xdmf_path = tmp_path/single_phase.fname.with_suffix('.xdmf').name
|
|
single_phase.export_XDMF(target_dir=tmp_path)
|
|
if update:
|
|
shutil.copy(xdmf_path,ref_path/xdmf_path.name)
|
|
assert sorted(open(xdmf_path).read()) == sorted(open(ref_path/xdmf_path.name).read())
|
|
|
|
@pytest.mark.skipif(not (hasattr(vtk,'vtkXdmfReader') and hasattr(vtk.vtkXdmfReader(),'GetOutput')),
|
|
reason='https://discourse.vtk.org/t/2450')
|
|
def test_XDMF_shape(self,tmp_path,single_phase):
|
|
single_phase.export_XDMF(target_dir=single_phase.fname.parent)
|
|
fname = single_phase.fname.with_suffix('.xdmf')
|
|
reader_xdmf = vtk.vtkXdmfReader()
|
|
reader_xdmf.SetFileName(fname)
|
|
reader_xdmf.Update()
|
|
dim_xdmf = reader_xdmf.GetOutput().GetDimensions()
|
|
bounds_xdmf = reader_xdmf.GetOutput().GetBounds()
|
|
|
|
single_phase.view(increments=0).export_VTK(target_dir=single_phase.fname.parent,parallel=False)
|
|
fname = single_phase.fname.with_name(single_phase.fname.stem+'_inc00.vti')
|
|
reader_vti = vtk.vtkXMLImageDataReader()
|
|
reader_vti.SetFileName(fname)
|
|
reader_vti.Update()
|
|
dim_vti = reader_vti.GetOutput().GetDimensions()
|
|
bounds_vti = reader_vti.GetOutput().GetBounds()
|
|
assert dim_vti == dim_xdmf and bounds_vti == bounds_xdmf
|
|
|
|
def test_XDMF_invalid(self,default):
|
|
with pytest.raises(TypeError):
|
|
default.export_XDMF()
|
|
|
|
def test_XDMF_custom_path(self,single_phase,tmp_path):
|
|
os.chdir(tmp_path)
|
|
single_phase.export_XDMF()
|
|
assert single_phase.fname.with_suffix('.xdmf').name in os.listdir(tmp_path)
|
|
export_dir = tmp_path/'export_dir'
|
|
single_phase.export_XDMF(target_dir=export_dir)
|
|
assert single_phase.fname.with_suffix('.xdmf').name in os.listdir(export_dir)
|
|
|
|
@pytest.mark.skipif(not (hasattr(vtk,'vtkXdmfReader') and hasattr(vtk.vtkXdmfReader(),'GetOutput')),
|
|
reason='https://discourse.vtk.org/t/2450')
|
|
def test_XDMF_relabs_path(self,single_phase,tmp_path):
|
|
def dims(xdmf):
|
|
reader_xdmf = vtk.vtkXdmfReader()
|
|
reader_xdmf.SetFileName(xdmf)
|
|
reader_xdmf.Update()
|
|
return reader_xdmf.GetOutput().GetDimensions()
|
|
|
|
single_phase.export_XDMF(target_dir=tmp_path)
|
|
xdmfname = single_phase.fname.with_suffix('.xdmf').name
|
|
ref_dims = dims(tmp_path/xdmfname)
|
|
|
|
for (d,info) in {
|
|
'A': dict(absolute_path=True,
|
|
mv='..',
|
|
),
|
|
'B': dict(absolute_path=False,
|
|
mv='../A',
|
|
),
|
|
}.items():
|
|
sub = tmp_path/d; sub.mkdir(exist_ok=True)
|
|
single_phase.export_XDMF(target_dir=sub,absolute_path=info['absolute_path'])
|
|
os.replace(sub/xdmfname,sub/info['mv']/xdmfname)
|
|
assert ref_dims == dims(sub/info['mv']/xdmfname)
|
|
|
|
@pytest.mark.parametrize('view,output,flatten,prune',
|
|
[({},['F','P','F','L_p','F_e','F_p'],True,True),
|
|
({'increments':3},'F',True,True),
|
|
({'increments':[1,8,3,4,5,6,7]},['F','P'],True,True),
|
|
({'phases':['A','B']},['F','P'],True,True),
|
|
({'phases':['A','C'],'homogenizations':False},['F','P','O'],True,True),
|
|
({'phases':False,'homogenizations':False},['F','P','O'],True,True),
|
|
({'phases':False},['Delta_V'],True,True),
|
|
({},['u_p','u_n'],False,False)],
|
|
ids=list(range(8)))
|
|
def test_get(self,update,request,ref_path,view,output,flatten,prune):
|
|
result = Result(ref_path/'4grains2x4x3_compressionY.hdf5')
|
|
for key,value in view.items():
|
|
result = result.view(**{key:value})
|
|
|
|
fname = request.node.name
|
|
cur = result.get(output,flatten,prune)
|
|
if update:
|
|
with bz2.BZ2File((ref_path/'get'/fname).with_suffix('.pbz2'),'w') as f:
|
|
pickle.dump(cur,f)
|
|
|
|
with bz2.BZ2File((ref_path/'get'/fname).with_suffix('.pbz2')) as f:
|
|
ref = pickle.load(f)
|
|
assert cur is None if ref is None else dict_equal(cur,ref)
|
|
|
|
@pytest.mark.parametrize('view,output,flatten,constituents,prune',
|
|
[({},['F','P','F','L_p','F_e','F_p'],True,True,None),
|
|
({'increments':3},'F',True,True,[0,1,2,3,4,5,6,7]),
|
|
({'increments':[1,8,3,4,5,6,7]},['F','P'],True,True,1),
|
|
({'phases':['A','B']},['F','P'],True,True,[1,2]),
|
|
({'phases':['A','C'],'homogenizations':False},['F','P','O'],True,True,[0,7]),
|
|
({'phases':False,'homogenizations':False},['F','P','O'],True,True,[1,2,3,4]),
|
|
({'phases':False},['Delta_V'],True,True,[1,2,4]),
|
|
({},['u_p','u_n'],False,False,None)],
|
|
ids=list(range(8)))
|
|
def test_place(self,update,request,ref_path,view,output,flatten,prune,constituents):
|
|
result = Result(ref_path/'4grains2x4x3_compressionY.hdf5')
|
|
for key,value in view.items():
|
|
result = result.view(**{key:value})
|
|
|
|
fname = request.node.name
|
|
cur = result.place(output,flatten,prune,constituents)
|
|
if update:
|
|
with bz2.BZ2File((ref_path/'place'/fname).with_suffix('.pbz2'),'w') as f:
|
|
pickle.dump(cur,f)
|
|
|
|
with bz2.BZ2File((ref_path/'place'/fname).with_suffix('.pbz2')) as f:
|
|
ref = pickle.load(f)
|
|
assert cur is None if ref is None else dict_equal(cur,ref)
|
|
|
|
|
|
@pytest.mark.parametrize('fname',['4grains2x4x3_compressionY.hdf5',
|
|
'6grains6x7x8_single_phase_tensionY.hdf5'])
|
|
@pytest.mark.parametrize('output',['material.yaml','*'])
|
|
@pytest.mark.parametrize('overwrite',[True,False])
|
|
def test_export_setup(self,ref_path,tmp_path,fname,output,overwrite):
|
|
r = Result(ref_path/fname)
|
|
r.export_setup(output,target_dir=tmp_path)
|
|
with h5py.File(ref_path/fname,'r') as f_hdf5:
|
|
for file in fnmatch.filter(f_hdf5['setup'].keys(),output):
|
|
with open(tmp_path/file) as f:
|
|
assert f_hdf5[f'setup/{file}'][()][0].decode() == f.read()
|
|
r.export_setup(output,target_dir=tmp_path,overwrite=overwrite)
|
|
|
|
def test_export_setup_custom_path(self,ref_path,tmp_path):
|
|
src = ref_path/'4grains2x4x3_compressionY.hdf5'
|
|
subdir = 'export_dir'
|
|
absdir = tmp_path/subdir
|
|
absdir.mkdir()
|
|
|
|
r = Result(src)
|
|
for t,cwd in zip([absdir,subdir,None],[tmp_path,tmp_path,absdir]):
|
|
os.chdir(cwd)
|
|
r.export_setup('material.yaml',target_dir=t)
|
|
assert 'material.yaml' in os.listdir(absdir); (absdir/'material.yaml').unlink()
|