150 lines
6.3 KiB
Python
Executable File
150 lines
6.3 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import os,re,sys,math,string,damask
|
|
from optparse import OptionParser, Option
|
|
|
|
# -----------------------------
|
|
class extendableOption(Option):
|
|
# -----------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
|
|
|
|
# definition of element-wise p-norms for matrices
|
|
|
|
# p = 1
|
|
def normAbs(object):
|
|
return sum(map(abs, object))
|
|
|
|
# p = 2
|
|
def normFrobenius(object):
|
|
return math.sqrt(sum([x*x for x in object]))
|
|
|
|
# p = infinity
|
|
def normMax(object):
|
|
return max(map(abs, object))
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing norm of requested column(s) being either vectors or tensors.
|
|
|
|
""" + string.replace('$Id$','\n','\\n')
|
|
)
|
|
|
|
normChoices = ['abs','frobenius','max']
|
|
|
|
parser.add_option('-n','--norm', dest='norm', action='store', type='choice', choices=normChoices, \
|
|
help='type of element-wise p-norm (%s) [2]'%(','.join(map(str,normChoices))))
|
|
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', \
|
|
help='heading of columns containing vector field values')
|
|
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
|
help='heading of columns containing tensor field values')
|
|
parser.add_option('-s','--special', dest='special', action='extend', type='string', \
|
|
help='heading of columns containing field values of special dimension')
|
|
parser.add_option('-d','--dimension', dest='N', action='store', type='int', \
|
|
help='dimension of special field values [%default]')
|
|
|
|
parser.set_defaults(norm = 'frobenius')
|
|
parser.set_defaults(vector = [])
|
|
parser.set_defaults(tensor = [])
|
|
parser.set_defaults(special = [])
|
|
parser.set_defaults(N = 12)
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if len(options.vector) + len(options.tensor) + len(options.special)== 0:
|
|
parser.error('no data column specified...')
|
|
|
|
datainfo = { # list of requested labels per datatype
|
|
'vector': {'len':3,
|
|
'label':[]},
|
|
'tensor': {'len':9,
|
|
'label':[]},
|
|
'special': {'len':options.N,
|
|
'label':[]},
|
|
}
|
|
|
|
|
|
if options.vector != None: datainfo['vector']['label'] += options.vector
|
|
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
|
if options.special != None: datainfo['special']['label'] += options.special
|
|
|
|
|
|
# ------------------------------------------ setup file handles ---------------------------------------
|
|
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
|
|
|
|
# ------------------------------------------ loop over input files ---------------------------------------
|
|
|
|
for file in files:
|
|
if file['name'] != 'STDIN': print file['name']
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
|
table.head_read() # read ASCII header info
|
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
|
'\t' + ' '.join(sys.argv[1:]))
|
|
|
|
# --------------- figure out columns to process
|
|
active = {}
|
|
column = {}
|
|
head = []
|
|
|
|
for datatype,info in datainfo.items():
|
|
for label in info['label']:
|
|
key = {True :'1_%s',
|
|
False:'%s' }[info['len']>1]%label
|
|
if key not in table.labels:
|
|
sys.stderr.write('column %s not found...\n'%key)
|
|
else:
|
|
if datatype not in active: active[datatype] = []
|
|
if datatype not in column: column[datatype] = {}
|
|
active[datatype].append(label)
|
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
|
table.labels_append('norm%s(%s)'%(options.norm.capitalize(),label)) # extend ASCII header with new labels
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data ---------------------------------------
|
|
|
|
while table.data_read(): # read next data line of ASCII table
|
|
|
|
for datatype,labels in active.items(): # loop over vector,tensor
|
|
for label in labels: # loop over all requested norms
|
|
eval("table.data_append(norm%s(map(float,table.data[column[datatype][label]:column[datatype][label]+datainfo[datatype]['len']])))"%options.norm.capitalize())
|
|
|
|
table.data_write() # output processed line
|
|
|
|
# ------------------------------------------ output result ---------------------------------------
|
|
|
|
table.output_flush() # just in case of buffered ASCII table
|
|
|
|
file['input'].close() # close input ASCII table
|
|
if file['name'] != 'STDIN':
|
|
file['output'].close # close output ASCII table
|
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|