126 lines
5.3 KiB
Python
Executable File
126 lines
5.3 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import os,re,sys,math,numpy,string,damask
|
|
from optparse import OptionParser, Option
|
|
|
|
# -----------------------------
|
|
class extendableOption(Option):
|
|
# -----------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing Cauchy stress based on given column(s) of
|
|
deformation gradient and first Piola--Kirchhoff stress.
|
|
|
|
""" + string.replace('$Id$','\n','\\n')
|
|
)
|
|
|
|
|
|
parser.add_option('-f','--defgrad', dest='defgrad', type='string', \
|
|
help='heading of columns containing deformation gradient [%default]')
|
|
parser.add_option('-p','--stress', dest='stress', type='string', \
|
|
help='heading of columns containing first Piola--Kirchhoff stress [%default]')
|
|
|
|
parser.set_defaults(defgrad = 'f')
|
|
parser.set_defaults(stress = 'p')
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if options.defgrad == None or options.stress == None:
|
|
parser.error('missing data column...')
|
|
|
|
datainfo = { # list of requested labels per datatype
|
|
'defgrad': {'len':9,
|
|
'label':[]},
|
|
'stress': {'len':9,
|
|
'label':[]},
|
|
}
|
|
|
|
|
|
datainfo['defgrad']['label'].append(options.defgrad)
|
|
datainfo['stress']['label'].append(options.stress)
|
|
|
|
|
|
# ------------------------------------------ setup file handles ---------------------------------------
|
|
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
|
|
|
|
# ------------------------------------------ loop over input files ---------------------------------------
|
|
|
|
for file in files:
|
|
if file['name'] != 'STDIN': print file['name']
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
|
table.head_read() # read ASCII header info
|
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
|
'\t' + ' '.join(sys.argv[1:]))
|
|
|
|
active = {}
|
|
column = {}
|
|
head = []
|
|
|
|
for datatype,info in datainfo.items():
|
|
for label in info['label']:
|
|
key = {True :'1_%s',
|
|
False:'%s' }[info['len']>1]%label
|
|
if key not in table.labels:
|
|
sys.stderr.write('column %s not found...\n'%key)
|
|
else:
|
|
if datatype not in active: active[datatype] = []
|
|
if datatype not in column: column[datatype] = {}
|
|
active[datatype].append(label)
|
|
column[datatype][label] = table.labels.index(key) # remember columns of requested data
|
|
|
|
table.labels_append(['%i_Cauchy'%(i+1)
|
|
for i in xrange(datainfo['defgrad']['len'])]) # extend ASCII header with new labels
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data ---------------------------------------
|
|
|
|
while table.data_read(): # read next data line of ASCII table
|
|
|
|
F = numpy.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]:
|
|
column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3)
|
|
P = numpy.array(map(float,table.data[column['stress'][active['stress'][0]]:
|
|
column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3)
|
|
|
|
table.data_append(list(1.0/numpy.linalg.det(F)*numpy.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
|
|
table.data_write() # output processed line
|
|
|
|
# ------------------------------------------ output result ---------------------------------------
|
|
|
|
table.output_flush() # just in case of buffered ASCII table
|
|
|
|
file['input'].close() # close input ASCII table
|
|
if file['name'] != 'STDIN':
|
|
file['output'].close # close output ASCII table
|
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|