DAMASK_EICMD/src/homogenization_mech_RGC.f90

1326 lines
61 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Relaxed grain cluster (RGC) homogenization scheme
!> Nconstituents is defined as p x q x r (cluster)
!--------------------------------------------------------------------------------------------------
module homogenization_mech_RGC
use prec
use material
implicit none
private
integer, dimension(:,:), allocatable,target, public :: &
homogenization_RGC_sizePostResult
character(len=64), dimension(:,:), allocatable,target, public :: &
homogenization_RGC_output ! name of each post result output
enum, bind(c)
enumerator :: &
undefined_ID, &
constitutivework_ID, &
penaltyenergy_ID, &
volumediscrepancy_ID, &
averagerelaxrate_ID,&
maximumrelaxrate_ID,&
magnitudemismatch_ID
end enum
type, private :: tParameters
integer, dimension(:), allocatable :: &
Nconstituents
real(pReal) :: &
xiAlpha, &
ciAlpha
real(pReal), dimension(:), allocatable :: &
dAlpha, &
angles
integer :: &
of_debug = 0
integer(kind(undefined_ID)), dimension(:), allocatable :: &
outputID
end type tParameters
type, private :: tRGCstate
real(pReal), pointer, dimension(:) :: &
work, &
penaltyEnergy
real(pReal), pointer, dimension(:,:) :: &
relaxationVector
end type tRGCstate
type, private :: tRGCdependentState
real(pReal), allocatable, dimension(:) :: &
volumeDiscrepancy, &
relaxationRate_avg, &
relaxationRate_max
real(pReal), allocatable, dimension(:,:) :: &
mismatch
real(pReal), allocatable, dimension(:,:,:) :: &
orientation
end type tRGCdependentState
type(tparameters), dimension(:), allocatable, private :: &
param
type(tRGCstate), dimension(:), allocatable, private :: &
state, &
state0
type(tRGCdependentState), dimension(:), allocatable, private :: &
dependentState
public :: &
homogenization_RGC_init, &
homogenization_RGC_partitionDeformation, &
homogenization_RGC_averageStressAndItsTangent, &
homogenization_RGC_updateState, &
homogenization_RGC_postResults, &
mech_RGC_results ! name suited for planned submodule situation
private :: &
relaxationVector, &
interfaceNormal, &
getInterface, &
grain1to3, &
grain3to1, &
interface4to1, &
interface1to4
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all necessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_RGC_init()
use debug, only: &
#ifdef DEBUG
debug_i, &
debug_e, &
#endif
debug_level, &
debug_homogenization, &
debug_levelBasic
use math, only: &
math_EulerToR, &
INRAD
use IO, only: &
IO_error
use config, only: &
config_homogenization
integer :: &
Ninstance, &
h, i, &
NofMyHomog, outputSize, &
sizeState, nIntFaceTot
character(len=65536), dimension(0), parameter :: emptyStringArray = [character(len=65536)::]
integer(kind(undefined_ID)) :: &
outputID
character(len=65536), dimension(:), allocatable :: &
outputs
write(6,'(/,a)') ' <<<+- homogenization_'//HOMOGENIZATION_RGC_label//' init -+>>>'
write(6,'(/,a)') ' Tjahjanto et al., International Journal of Material Forming 2(1):939942, 2009'
write(6,'(a)') ' https://doi.org/10.1007/s12289-009-0619-1'
write(6,'(/,a)') ' Tjahjanto et al., Modelling and Simulation in Materials Science and Engineering 18:015006, 2010'
write(6,'(a)') ' https://doi.org/10.1088/0965-0393/18/1/015006'
Ninstance = count(homogenization_type == HOMOGENIZATION_RGC_ID)
if (iand(debug_level(debug_HOMOGENIZATION),debug_levelBasic) /= 0) &
write(6,'(a16,1x,i5,/)') '# instances:',Ninstance
allocate(param(Ninstance))
allocate(state(Ninstance))
allocate(state0(Ninstance))
allocate(dependentState(Ninstance))
allocate(homogenization_RGC_sizePostResult(maxval(homogenization_Noutput),Ninstance),source=0)
allocate(homogenization_RGC_output(maxval(homogenization_Noutput),Ninstance))
homogenization_RGC_output=''
do h = 1, size(homogenization_type)
if (homogenization_type(h) /= HOMOGENIZATION_RGC_ID) cycle
associate(prm => param(homogenization_typeInstance(h)), &
stt => state(homogenization_typeInstance(h)), &
st0 => state0(homogenization_typeInstance(h)), &
dst => dependentState(homogenization_typeInstance(h)), &
config => config_homogenization(h))
#ifdef DEBUG
if (h==material_homogenizationAt(debug_e)) then
prm%of_debug = mappingHomogenization(1,debug_i,debug_e)
endif
#endif
prm%Nconstituents = config%getInts('clustersize',requiredSize=3)
if (homogenization_Ngrains(h) /= product(prm%Nconstituents)) &
call IO_error(211,ext_msg='clustersize ('//HOMOGENIZATION_RGC_label//')')
prm%xiAlpha = config%getFloat('scalingparameter')
prm%ciAlpha = config%getFloat('overproportionality')
prm%dAlpha = config%getFloats('grainsize', requiredSize=3)
prm%angles = config%getFloats('clusterorientation',requiredSize=3)
outputs = config%getStrings('(output)',defaultVal=emptyStringArray)
allocate(prm%outputID(0))
do i=1, size(outputs)
outputID = undefined_ID
select case(outputs(i))
case('constitutivework')
outputID = constitutivework_ID
outputSize = 1
case('penaltyenergy')
outputID = penaltyenergy_ID
outputSize = 1
case('volumediscrepancy')
outputID = volumediscrepancy_ID
outputSize = 1
case('averagerelaxrate')
outputID = averagerelaxrate_ID
outputSize = 1
case('maximumrelaxrate')
outputID = maximumrelaxrate_ID
outputSize = 1
case('magnitudemismatch')
outputID = magnitudemismatch_ID
outputSize = 3
end select
if (outputID /= undefined_ID) then
homogenization_RGC_output(i,homogenization_typeInstance(h)) = outputs(i)
homogenization_RGC_sizePostResult(i,homogenization_typeInstance(h)) = outputSize
prm%outputID = [prm%outputID , outputID]
endif
enddo
NofMyHomog = count(material_homogenizationAt == h)
nIntFaceTot = 3*( (prm%Nconstituents(1)-1)*prm%Nconstituents(2)*prm%Nconstituents(3) &
+ prm%Nconstituents(1)*(prm%Nconstituents(2)-1)*prm%Nconstituents(3) &
+ prm%Nconstituents(1)*prm%Nconstituents(2)*(prm%Nconstituents(3)-1))
sizeState = nIntFaceTot &
+ size(['avg constitutive work ','average penalty energy'])
homogState(h)%sizeState = sizeState
homogState(h)%sizePostResults = sum(homogenization_RGC_sizePostResult(:,homogenization_typeInstance(h)))
allocate(homogState(h)%state0 (sizeState,NofMyHomog), source=0.0_pReal)
allocate(homogState(h)%subState0(sizeState,NofMyHomog), source=0.0_pReal)
allocate(homogState(h)%state (sizeState,NofMyHomog), source=0.0_pReal)
stt%relaxationVector => homogState(h)%state(1:nIntFaceTot,:)
st0%relaxationVector => homogState(h)%state0(1:nIntFaceTot,:)
stt%work => homogState(h)%state(nIntFaceTot+1,:)
stt%penaltyEnergy => homogState(h)%state(nIntFaceTot+2,:)
allocate(dst%volumeDiscrepancy( NofMyHomog))
allocate(dst%relaxationRate_avg( NofMyHomog))
allocate(dst%relaxationRate_max( NofMyHomog))
allocate(dst%mismatch( 3,NofMyHomog))
!--------------------------------------------------------------------------------------------------
! assigning cluster orientations
dependentState(homogenization_typeInstance(h))%orientation = spread(math_EulerToR(prm%angles*inRad),3,NofMyHomog)
!dst%orientation = spread(math_EulerToR(prm%angles*inRad),3,NofMyHomog) ifort version 18.0.1 crashes (for whatever reason)
end associate
enddo
end subroutine homogenization_RGC_init
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_RGC_partitionDeformation(F,avgF,instance,of)
#ifdef DEBUG
use debug, only: &
debug_level, &
debug_homogenization, &
debug_levelExtensive
#endif
real(pReal), dimension (:,:,:), intent(out) :: F !< partioned F per grain
real(pReal), dimension (:,:), intent(in) :: avgF !< averaged F
integer, intent(in) :: &
instance, &
of
real(pReal), dimension(3) :: aVect,nVect
integer, dimension(4) :: intFace
integer, dimension(3) :: iGrain3
integer :: iGrain,iFace,i,j
associate(prm => param(instance))
!--------------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
F = 0.0_pReal
do iGrain = 1,product(prm%Nconstituents)
iGrain3 = grain1to3(iGrain,prm%Nconstituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! identifying 6 interfaces of each grain
aVect = relaxationVector(intFace,instance,of) ! get the relaxation vectors for each interface from global relaxation vector array
nVect = interfaceNormal(intFace,instance,of)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! calculating deformation relaxations due to interface relaxation
enddo
F(1:3,1:3,iGrain) = F(1:3,1:3,iGrain) + avgF ! resulting relaxed deformation gradient
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0) then
write(6,'(1x,a32,1x,i3)')'Deformation gradient of grain: ',iGrain
do i = 1,3
write(6,'(1x,3(e15.8,1x))')(F(i,j,iGrain), j = 1,3)
enddo
write(6,*)' '
flush(6)
endif
#endif
enddo
end associate
end subroutine homogenization_RGC_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
! "happy" with result
!--------------------------------------------------------------------------------------------------
function homogenization_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el)
#ifdef DEBUG
use debug, only: &
debug_level, &
debug_homogenization,&
debug_levelExtensive
#endif
use math, only: &
math_invert2
use numerics, only: &
absTol_RGC, &
relTol_RGC, &
absMax_RGC, &
relMax_RGC, &
pPert_RGC, &
maxdRelax_RGC, &
viscPower_RGC, &
viscModus_RGC, &
refRelaxRate_RGC
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< array of P
F,& !< array of F
F0 !< array of initial F
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< array of current grain stiffness
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
logical, dimension(2) :: homogenization_RGC_updateState
integer, dimension(4) :: intFaceN,intFaceP,faceID
integer, dimension(3) :: nGDim,iGr3N,iGr3P
integer :: instance,iNum,i,j,nIntFaceTot,iGrN,iGrP,iMun,iFace,k,l,ipert,iGrain,nGrain, of
real(pReal), dimension(3,3,size(P,3)) :: R,pF,pR,D,pD
real(pReal), dimension(3,size(P,3)) :: NN,devNull
real(pReal), dimension(3) :: normP,normN,mornP,mornN
real(pReal) :: residMax,stresMax
logical :: error
real(pReal), dimension(:,:), allocatable :: tract,jmatrix,jnverse,smatrix,pmatrix,rmatrix
real(pReal), dimension(:), allocatable :: resid,relax,p_relax,p_resid,drelax
#ifdef DEBUG
integer, dimension(3) :: stresLoc
integer, dimension(2) :: residLoc
#endif
zeroTimeStep: if(dEq0(dt)) then
homogenization_RGC_updateState = .true. ! pretend everything is fine and return
return
endif zeroTimeStep
instance = homogenization_typeInstance(material_homogenizationAt(el))
of = mappingHomogenization(1,ip,el)
associate(stt => state(instance), st0 => state0(instance), dst => dependentState(instance), prm => param(instance))
!--------------------------------------------------------------------------------------------------
! get the dimension of the cluster (grains and interfaces)
nGDim = prm%Nconstituents
nGrain = product(nGDim)
nIntFaceTot = (nGDim(1)-1)*nGDim(2)*nGDim(3) &
+ nGDim(1)*(nGDim(2)-1)*nGDim(3) &
+ nGDim(1)*nGDim(2)*(nGDim(3)-1)
!--------------------------------------------------------------------------------------------------
! allocate the size of the global relaxation arrays/jacobian matrices depending on the size of the cluster
allocate(resid(3*nIntFaceTot), source=0.0_pReal)
allocate(tract(nIntFaceTot,3), source=0.0_pReal)
relax = stt%relaxationVector(:,of)
drelax = stt%relaxationVector(:,of) - st0%relaxationVector(:,of)
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0) then
write(6,'(1x,a30)')'Obtained state: '
do i = 1,size(stt%relaxationVector(:,of))
write(6,'(1x,2(e15.8,1x))') stt%relaxationVector(i,of)
enddo
write(6,*)' '
endif
#endif
!--------------------------------------------------------------------------------------------------
! computing interface mismatch and stress penalty tensor for all interfaces of all grains
call stressPenalty(R,NN,avgF,F,ip,el,instance,of)
!--------------------------------------------------------------------------------------------------
! calculating volume discrepancy and stress penalty related to overall volume discrepancy
call volumePenalty(D,dst%volumeDiscrepancy(of),avgF,F,nGrain,instance,of)
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0) then
do iGrain = 1,nGrain
write(6,'(1x,a30,1x,i3,1x,a4,3(1x,e15.8))')'Mismatch magnitude of grain(',iGrain,') :',&
NN(1,iGrain),NN(2,iGrain),NN(3,iGrain)
write(6,'(/,1x,a30,1x,i3)')'Stress and penalties of grain: ',iGrain
do i = 1,3
write(6,'(1x,3(e15.8,1x),1x,3(e15.8,1x),1x,3(e15.8,1x))')(P(i,j,iGrain), j = 1,3), &
(R(i,j,iGrain), j = 1,3), &
(D(i,j,iGrain), j = 1,3)
enddo
write(6,*)' '
enddo
endif
#endif
!------------------------------------------------------------------------------------------------
! computing the residual stress from the balance of traction at all (interior) interfaces
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%Nconstituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N)
normN = interfaceNormal(intFaceN,instance,of)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P)
normP = interfaceNormal(intFaceP,instance,of)
!--------------------------------------------------------------------------------------------------
! compute the residual of traction at the interface (in local system, 4-dimensional index)
do i = 1,3
tract(iNum,i) = sign(viscModus_RGC*(abs(drelax(i+3*(iNum-1)))/(refRelaxRate_RGC*dt))**viscPower_RGC, &
drelax(i+3*(iNum-1))) ! contribution from the relaxation viscosity
do j = 1,3
tract(iNum,i) = tract(iNum,i) + (P(i,j,iGrP) + R(i,j,iGrP) + D(i,j,iGrP))*normP(j) & ! contribution from material stress P, mismatch penalty R, and volume penalty D projected into the interface
+ (P(i,j,iGrN) + R(i,j,iGrN) + D(i,j,iGrN))*normN(j)
resid(i+3*(iNum-1)) = tract(iNum,i) ! translate the local residual into global 1-dimensional residual array
enddo
enddo
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0) then
write(6,'(1x,a30,1x,i3)')'Traction at interface: ',iNum
write(6,'(1x,3(e15.8,1x))')(tract(iNum,j), j = 1,3)
write(6,*)' '
endif
#endif
enddo
!--------------------------------------------------------------------------------------------------
! convergence check for stress residual
stresMax = maxval(abs(P)) ! get the maximum of first Piola-Kirchhoff (material) stress
residMax = maxval(abs(tract)) ! get the maximum of the residual
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. prm%of_debug == of) then
stresLoc = maxloc(abs(P))
residLoc = maxloc(abs(tract))
write(6,'(1x,a)')' '
write(6,'(1x,a,1x,i2,1x,i4)')'RGC residual check ...',ip,el
write(6,'(1x,a15,1x,e15.8,1x,a7,i3,1x,a12,i2,i2)')'Max stress: ',stresMax, &
'@ grain',stresLoc(3),'in component',stresLoc(1),stresLoc(2)
write(6,'(1x,a15,1x,e15.8,1x,a7,i3,1x,a12,i2)')'Max residual: ',residMax, &
'@ iface',residLoc(1),'in direction',residLoc(2)
flush(6)
endif
#endif
homogenization_RGC_updateState = .false.
!--------------------------------------------------------------------------------------------------
! If convergence reached => done and happy
if (residMax < relTol_RGC*stresMax .or. residMax < absTol_RGC) then
homogenization_RGC_updateState = .true.
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. prm%of_debug == of) write(6,'(1x,a55,/)')'... done and happy'
flush(6)
#endif
!--------------------------------------------------------------------------------------------------
! compute/update the state for postResult, i.e., all energy densities computed by time-integration
do iGrain = 1,product(prm%Nconstituents)
do i = 1,3;do j = 1,3
stt%work(of) = stt%work(of) &
+ P(i,j,iGrain)*(F(i,j,iGrain) - F0(i,j,iGrain))/real(nGrain,pReal)
stt%penaltyEnergy(of) = stt%penaltyEnergy(of) &
+ R(i,j,iGrain)*(F(i,j,iGrain) - F0(i,j,iGrain))/real(nGrain,pReal)
enddo; enddo
enddo
dst%mismatch(1:3,of) = sum(NN,2)/real(nGrain,pReal)
dst%relaxationRate_avg(of) = sum(abs(drelax))/dt/real(3*nIntFaceTot,pReal)
dst%relaxationRate_max(of) = maxval(abs(drelax))/dt
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. prm%of_debug == of) then
write(6,'(1x,a30,1x,e15.8)') 'Constitutive work: ',stt%work(of)
write(6,'(1x,a30,3(1x,e15.8))')'Magnitude mismatch: ',dst%mismatch(1,of), &
dst%mismatch(2,of), &
dst%mismatch(3,of)
write(6,'(1x,a30,1x,e15.8)') 'Penalty energy: ', stt%penaltyEnergy(of)
write(6,'(1x,a30,1x,e15.8,/)') 'Volume discrepancy: ', dst%volumeDiscrepancy(of)
write(6,'(1x,a30,1x,e15.8)') 'Maximum relaxation rate: ', dst%relaxationRate_max(of)
write(6,'(1x,a30,1x,e15.8,/)') 'Average relaxation rate: ', dst%relaxationRate_avg(of)
flush(6)
endif
#endif
return
!--------------------------------------------------------------------------------------------------
! if residual blows-up => done but unhappy
elseif (residMax > relMax_RGC*stresMax .or. residMax > absMax_RGC) then ! try to restart when residual blows up exceeding maximum bound
homogenization_RGC_updateState = [.true.,.false.] ! with direct cut-back
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. prm%of_debug == of) write(6,'(1x,a,/)') '... broken'
flush(6)
#endif
return
else ! proceed with computing the Jacobian and state update
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. prm%of_debug == of) write(6,'(1x,a,/)') '... not yet done'
flush(6)
#endif
endif
!---------------------------------------------------------------------------------------------------
! construct the global Jacobian matrix for updating the global relaxation vector array when
! convergence is not yet reached ...
!--------------------------------------------------------------------------------------------------
! ... of the constitutive stress tangent, assembled from dPdF or material constitutive model "smatrix"
allocate(smatrix(3*nIntFaceTot,3*nIntFaceTot), source=0.0_pReal)
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%Nconstituents) ! assembling of local dPdF into global Jacobian matrix
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate sytem
iGrN = grain3to1(iGr3N,param(instance)%Nconstituents) ! translate into global grain ID
intFaceN = getInterface(2*faceID(1),iGr3N) ! identifying the connecting interface in local coordinate system
normN = interfaceNormal(intFaceN,instance,of)
do iFace = 1,6
intFaceN = getInterface(iFace,iGr3N) ! identifying all interfaces that influence relaxation of the above interface
mornN = interfaceNormal(intFaceN,instance,of)
iMun = interface4to1(intFaceN,param(instance)%Nconstituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) &
+ dPdF(i,k,j,l,iGrN)*normN(k)*mornN(l)
enddo;enddo;enddo;enddo
! projecting the material tangent dPdF into the interface
! to obtain the Jacobian matrix contribution of dPdF
endif
enddo
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identifying the grain ID in local coordinate sytem
iGrP = grain3to1(iGr3P,param(instance)%Nconstituents) ! translate into global grain ID
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identifying the connecting interface in local coordinate system
normP = interfaceNormal(intFaceP,instance,of)
do iFace = 1,6
intFaceP = getInterface(iFace,iGr3P) ! identifying all interfaces that influence relaxation of the above interface
mornP = interfaceNormal(intFaceP,instance,of)
iMun = interface4to1(intFaceP,param(instance)%Nconstituents) ! translate the interfaces ID into local 4-dimensional index
if (iMun > 0) then ! get the corresponding tangent
do i=1,3; do j=1,3; do k=1,3; do l=1,3
smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) &
+ dPdF(i,k,j,l,iGrP)*normP(k)*mornP(l)
enddo;enddo;enddo;enddo
endif
enddo
enddo
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0) then
write(6,'(1x,a30)')'Jacobian matrix of stress'
do i = 1,3*nIntFaceTot
write(6,'(1x,100(e11.4,1x))')(smatrix(i,j), j = 1,3*nIntFaceTot)
enddo
write(6,*)' '
flush(6)
endif
#endif
!--------------------------------------------------------------------------------------------------
! ... of the stress penalty tangent (mismatch penalty and volume penalty, computed using numerical
! perturbation method) "pmatrix"
allocate(pmatrix(3*nIntFaceTot,3*nIntFaceTot), source=0.0_pReal)
allocate(p_relax(3*nIntFaceTot), source=0.0_pReal)
allocate(p_resid(3*nIntFaceTot), source=0.0_pReal)
do ipert = 1,3*nIntFaceTot
p_relax = relax
p_relax(ipert) = relax(ipert) + pPert_RGC ! perturb the relaxation vector
stt%relaxationVector(:,of) = p_relax
call grainDeformation(pF,avgF,instance,of) ! rain deformation from perturbed state
call stressPenalty(pR,DevNull, avgF,pF,ip,el,instance,of) ! stress penalty due to interface mismatch from perturbed state
call volumePenalty(pD,devNull(1,1), avgF,pF,nGrain,instance,of) ! stress penalty due to volume discrepancy from perturbed state
!--------------------------------------------------------------------------------------------------
! computing the global stress residual array from the perturbed state
p_resid = 0.0_pReal
do iNum = 1,nIntFaceTot
faceID = interface1to4(iNum,param(instance)%Nconstituents) ! identifying the interface ID in local coordinate system (4-dimensional index)
!--------------------------------------------------------------------------------------------------
! identify the left/bottom/back grain (-|N)
iGr3N = faceID(2:4) ! identify the grain ID in local coordinate system (3-dimensional index)
iGrN = grain3to1(iGr3N,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceN = getInterface(2*faceID(1),iGr3N) ! identify the interface ID of the grain
normN = interfaceNormal(intFaceN,instance,of)
!--------------------------------------------------------------------------------------------------
! identify the right/up/front grain (+|P)
iGr3P = iGr3N
iGr3P(faceID(1)) = iGr3N(faceID(1))+1 ! identify the grain ID in local coordinate system (3-dimensional index)
iGrP = grain3to1(iGr3P,param(instance)%Nconstituents) ! translate the local grain ID into global coordinate system (1-dimensional index)
intFaceP = getInterface(2*faceID(1)-1,iGr3P) ! identify the interface ID of the grain
normP = interfaceNormal(intFaceP,instance,of)
!--------------------------------------------------------------------------------------------------
! compute the residual stress (contribution of mismatch and volume penalties) from perturbed state
! at all interfaces
do i = 1,3; do j = 1,3
p_resid(i+3*(iNum-1)) = p_resid(i+3*(iNum-1)) + (pR(i,j,iGrP) - R(i,j,iGrP))*normP(j) &
+ (pR(i,j,iGrN) - R(i,j,iGrN))*normN(j) &
+ (pD(i,j,iGrP) - D(i,j,iGrP))*normP(j) &
+ (pD(i,j,iGrN) - D(i,j,iGrN))*normN(j)
enddo; enddo
enddo
pmatrix(:,ipert) = p_resid/pPert_RGC
enddo
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0) then
write(6,'(1x,a30)')'Jacobian matrix of penalty'
do i = 1,3*nIntFaceTot
write(6,'(1x,100(e11.4,1x))')(pmatrix(i,j), j = 1,3*nIntFaceTot)
enddo
write(6,*)' '
flush(6)
endif
#endif
!--------------------------------------------------------------------------------------------------
! ... of the numerical viscosity traction "rmatrix"
allocate(rmatrix(3*nIntFaceTot,3*nIntFaceTot),source=0.0_pReal)
forall (i=1:3*nIntFaceTot) &
rmatrix(i,i) = viscModus_RGC*viscPower_RGC/(refRelaxRate_RGC*dt)* & ! tangent due to numerical viscosity traction appears
(abs(drelax(i))/(refRelaxRate_RGC*dt))**(viscPower_RGC - 1.0_pReal) ! only in the main diagonal term
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0) then
write(6,'(1x,a30)')'Jacobian matrix of penalty'
do i = 1,3*nIntFaceTot
write(6,'(1x,100(e11.4,1x))')(rmatrix(i,j), j = 1,3*nIntFaceTot)
enddo
write(6,*)' '
flush(6)
endif
#endif
!--------------------------------------------------------------------------------------------------
! The overall Jacobian matrix summarizing contributions of smatrix, pmatrix, rmatrix
allocate(jmatrix(3*nIntFaceTot,3*nIntFaceTot)); jmatrix = smatrix + pmatrix + rmatrix
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0) then
write(6,'(1x,a30)')'Jacobian matrix (total)'
do i = 1,3*nIntFaceTot
write(6,'(1x,100(e11.4,1x))')(jmatrix(i,j), j = 1,3*nIntFaceTot)
enddo
write(6,*)' '
flush(6)
endif
#endif
!--------------------------------------------------------------------------------------------------
! computing the update of the state variable (relaxation vectors) using the Jacobian matrix
allocate(jnverse(3*nIntFaceTot,3*nIntFaceTot),source=0.0_pReal)
call math_invert2(jnverse,error,jmatrix)
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0) then
write(6,'(1x,a30)')'Jacobian inverse'
do i = 1,3*nIntFaceTot
write(6,'(1x,100(e11.4,1x))')(jnverse(i,j), j = 1,3*nIntFaceTot)
enddo
write(6,*)' '
flush(6)
endif
#endif
!--------------------------------------------------------------------------------------------------
! calculate the state update (global relaxation vectors) for the next Newton-Raphson iteration
drelax = 0.0_pReal
do i = 1,3*nIntFaceTot;do j = 1,3*nIntFaceTot
drelax(i) = drelax(i) - jnverse(i,j)*resid(j) ! Calculate the correction for the state variable
enddo; enddo
stt%relaxationVector(:,of) = relax + drelax ! Updateing the state variable for the next iteration
if (any(abs(drelax) > maxdRelax_RGC)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large
homogenization_RGC_updateState = [.true.,.false.]
!$OMP CRITICAL (write2out)
write(6,'(1x,a,1x,i3,1x,a,1x,i3,1x,a)')'RGC_updateState: ip',ip,'| el',el,'enforces cutback'
write(6,'(1x,a,1x,e15.8)')'due to large relaxation change =',maxval(abs(drelax))
flush(6)
!$OMP END CRITICAL (write2out)
endif
#ifdef DEBUG
if (iand(debug_homogenization, debug_levelExtensive) > 0) then
write(6,'(1x,a30)')'Returned state: '
do i = 1,size(stt%relaxationVector(:,of))
write(6,'(1x,2(e15.8,1x))') stt%relaxationVector(i,of)
enddo
write(6,*)' '
flush(6)
endif
#endif
end associate
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to deformation mismatch
!--------------------------------------------------------------------------------------------------
subroutine stressPenalty(rPen,nMis,avgF,fDef,ip,el,instance,of)
use math, only: &
math_civita
use numerics, only: &
xSmoo_RGC
real(pReal), dimension (:,:,:), intent(out) :: rPen !< stress-like penalty
real(pReal), dimension (:,:), intent(out) :: nMis !< total amount of mismatch
real(pReal), dimension (:,:,:), intent(in) :: fDef !< deformation gradients
real(pReal), dimension (3,3), intent(in) :: avgF !< initial effective stretch tensor
integer, intent(in) :: ip,el,instance,of
integer, dimension (4) :: intFace
integer, dimension (3) :: iGrain3,iGNghb3,nGDim
real(pReal), dimension (3,3) :: gDef,nDef
real(pReal), dimension (3) :: nVect,surfCorr
real(pReal), dimension (2) :: Gmoduli
integer :: iGrain,iGNghb,iFace,i,j,k,l
real(pReal) :: muGrain,muGNghb,nDefNorm,bgGrain,bgGNghb
real(pReal), parameter :: nDefToler = 1.0e-10_pReal
#ifdef DEBUG
logical :: debugActive
#endif
nGDim = param(instance)%Nconstituents
rPen = 0.0_pReal
nMis = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! get the correction factor the modulus of penalty stress representing the evolution of area of
! the interfaces due to deformations
surfCorr = surfaceCorrection(avgF,instance,of)
associate(prm => param(instance))
#ifdef DEBUG
debugActive = iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. prm%of_debug == of
if (debugActive) then
write(6,'(1x,a20,2(1x,i3))')'Correction factor: ',ip,el
write(6,*) surfCorr
endif
#endif
!--------------------------------------------------------------------------------------------------
! computing the mismatch and penalty stress tensor of all grains
grainLoop: do iGrain = 1,product(prm%Nconstituents)
Gmoduli = equivalentModuli(iGrain,ip,el)
muGrain = Gmoduli(1) ! collecting the equivalent shear modulus of grain
bgGrain = Gmoduli(2) ! and the lengthh of Burgers vector
iGrain3 = grain1to3(iGrain,prm%Nconstituents) ! get the grain ID in local 3-dimensional index (x,y,z)-position
interfaceLoop: do iFace = 1,6
intFace = getInterface(iFace,iGrain3) ! get the 4-dimensional index of the interface in local numbering system of the grain
nVect = interfaceNormal(intFace,instance,of)
iGNghb3 = iGrain3 ! identify the neighboring grain across the interface
iGNghb3(abs(intFace(1))) = iGNghb3(abs(intFace(1))) &
+ int(real(intFace(1),pReal)/real(abs(intFace(1)),pReal))
where(iGNghb3 < 1) iGNghb3 = nGDim
where(iGNghb3 >nGDim) iGNghb3 = 1
iGNghb = grain3to1(iGNghb3,prm%Nconstituents) ! get the ID of the neighboring grain
Gmoduli = equivalentModuli(iGNghb,ip,el) ! collect the shear modulus and Burgers vector of the neighbor
muGNghb = Gmoduli(1)
bgGNghb = Gmoduli(2)
gDef = 0.5_pReal*(fDef(1:3,1:3,iGNghb) - fDef(1:3,1:3,iGrain)) ! difference/jump in deformation gradeint across the neighbor
!--------------------------------------------------------------------------------------------------
! compute the mismatch tensor of all interfaces
nDefNorm = 0.0_pReal
nDef = 0.0_pReal
do i = 1,3; do j = 1,3
do k = 1,3; do l = 1,3
nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_civita(j,k,l) ! compute the interface mismatch tensor from the jump of deformation gradient
enddo; enddo
nDefNorm = nDefNorm + nDef(i,j)**2.0_pReal ! compute the norm of the mismatch tensor
enddo; enddo
nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! approximation to zero mismatch if mismatch is zero (singularity)
nMis(abs(intFace(1)),iGrain) = nMis(abs(intFace(1)),iGrain) + nDefNorm ! total amount of mismatch experienced by the grain (at all six interfaces)
#ifdef DEBUG
if (debugActive) then
write(6,'(1x,a20,i2,1x,a20,1x,i3)')'Mismatch to face: ',intFace(1),'neighbor grain: ',iGNghb
write(6,*) transpose(nDef)
write(6,'(1x,a20,e11.4)')'with magnitude: ',nDefNorm
endif
#endif
!--------------------------------------------------------------------------------------------------
! compute the stress penalty of all interfaces
do i = 1,3; do j = 1,3; do k = 1,3; do l = 1,3
rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*bgGrain + muGNghb*bgGNghb)*prm%xiAlpha &
*surfCorr(abs(intFace(1)))/prm%dAlpha(abs(intFace(1))) &
*cosh(prm%ciAlpha*nDefNorm) &
*0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_civita(k,l,j) &
*tanh(nDefNorm/xSmoo_RGC)
enddo; enddo;enddo; enddo
enddo interfaceLoop
#ifdef DEBUG
if (debugActive) then
write(6,'(1x,a20,i2)')'Penalty of grain: ',iGrain
write(6,*) transpose(rPen(1:3,1:3,iGrain))
endif
#endif
enddo grainLoop
end associate
end subroutine stressPenalty
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress-like penalty due to volume discrepancy
!--------------------------------------------------------------------------------------------------
subroutine volumePenalty(vPen,vDiscrep,fAvg,fDef,nGrain,instance,of)
use math, only: &
math_det33, &
math_inv33
use numerics, only: &
maxVolDiscr_RGC,&
volDiscrMod_RGC,&
volDiscrPow_RGC
real(pReal), dimension (:,:,:), intent(out) :: vPen ! stress-like penalty due to volume
real(pReal), intent(out) :: vDiscrep ! total volume discrepancy
real(pReal), dimension (:,:,:), intent(in) :: fDef ! deformation gradients
real(pReal), dimension (3,3), intent(in) :: fAvg ! overall deformation gradient
integer, intent(in) :: &
Ngrain, &
instance, &
of
real(pReal), dimension(size(vPen,3)) :: gVol
integer :: i
!--------------------------------------------------------------------------------------------------
! compute the volumes of grains and of cluster
vDiscrep = math_det33(fAvg) ! compute the volume of the cluster
do i = 1,nGrain
gVol(i) = math_det33(fDef(1:3,1:3,i)) ! compute the volume of individual grains
vDiscrep = vDiscrep - gVol(i)/real(nGrain,pReal) ! calculate the difference/dicrepancy between
! the volume of the cluster and the the total volume of grains
enddo
!--------------------------------------------------------------------------------------------------
! calculate the stress and penalty due to volume discrepancy
vPen = 0.0_pReal
do i = 1,nGrain
vPen(:,:,i) = -1.0_pReal/real(nGrain,pReal)*volDiscrMod_RGC*volDiscrPow_RGC/maxVolDiscr_RGC* &
sign((abs(vDiscrep)/maxVolDiscr_RGC)**(volDiscrPow_RGC - 1.0),vDiscrep)* &
gVol(i)*transpose(math_inv33(fDef(:,:,i)))
#ifdef DEBUG
if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0 &
.and. param(instance)%of_debug == of) then
write(6,'(1x,a30,i2)')'Volume penalty of grain: ',i
write(6,*) transpose(vPen(:,:,i))
endif
#endif
enddo
end subroutine volumePenalty
!--------------------------------------------------------------------------------------------------
!> @brief compute the correction factor accouted for surface evolution (area change) due to
! deformation
!--------------------------------------------------------------------------------------------------
function surfaceCorrection(avgF,instance,of)
use math, only: &
math_invert33
real(pReal), dimension(3) :: surfaceCorrection
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
integer, intent(in) :: &
instance, &
of
real(pReal), dimension(3,3) :: invC
real(pReal), dimension(3) :: nVect
real(pReal) :: detF
integer :: i,j,iBase
logical :: error
call math_invert33(matmul(transpose(avgF),avgF),invC,detF,error)
surfaceCorrection = 0.0_pReal
do iBase = 1,3
nVect = interfaceNormal([iBase,1,1,1],instance,of)
do i = 1,3; do j = 1,3
surfaceCorrection(iBase) = surfaceCorrection(iBase) + invC(i,j)*nVect(i)*nVect(j) ! compute the component of (the inverse of) the stretch in the direction of the normal
enddo; enddo
surfaceCorrection(iBase) = sqrt(surfaceCorrection(iBase))*detF ! get the surface correction factor (area contraction/enlargement)
enddo
end function surfaceCorrection
!--------------------------------------------------------------------------------------------------
!> @brief compute the equivalent shear and bulk moduli from the elasticity tensor
!--------------------------------------------------------------------------------------------------
function equivalentModuli(grainID,ip,el)
use constitutive, only: &
constitutive_homogenizedC
real(pReal), dimension(2) :: equivalentModuli
integer, intent(in) :: &
grainID,&
ip, & !< integration point number
el !< element number
real(pReal), dimension(6,6) :: elasTens
real(pReal) :: &
cEquiv_11, &
cEquiv_12, &
cEquiv_44
elasTens = constitutive_homogenizedC(grainID,ip,el)
!--------------------------------------------------------------------------------------------------
! compute the equivalent shear modulus after Turterltaub and Suiker, JMPS (2005)
cEquiv_11 = (elasTens(1,1) + elasTens(2,2) + elasTens(3,3))/3.0_pReal
cEquiv_12 = (elasTens(1,2) + elasTens(2,3) + elasTens(3,1) + &
elasTens(1,3) + elasTens(2,1) + elasTens(3,2))/6.0_pReal
cEquiv_44 = (elasTens(4,4) + elasTens(5,5) + elasTens(6,6))/3.0_pReal
equivalentModuli(1) = 0.2_pReal*(cEquiv_11 - cEquiv_12) + 0.6_pReal*cEquiv_44
!--------------------------------------------------------------------------------------------------
! obtain the length of Burgers vector (could be model dependend)
equivalentModuli(2) = 2.5e-10_pReal
end function equivalentModuli
!--------------------------------------------------------------------------------------------------
!> @brief calculating the grain deformation gradient (the same with
! homogenization_RGC_partitionDeformation, but used only for perturbation scheme)
!--------------------------------------------------------------------------------------------------
subroutine grainDeformation(F, avgF, instance, of)
real(pReal), dimension(:,:,:), intent(out) :: F !< partioned F per grain
real(pReal), dimension(:,:), intent(in) :: avgF !< averaged F
integer, intent(in) :: &
instance, &
of
real(pReal), dimension(3) :: aVect,nVect
integer, dimension(4) :: intFace
integer, dimension(3) :: iGrain3
integer :: iGrain,iFace,i,j
!-------------------------------------------------------------------------------------------------
! compute the deformation gradient of individual grains due to relaxations
associate(prm => param(instance))
F = 0.0_pReal
do iGrain = 1,product(prm%Nconstituents)
iGrain3 = grain1to3(iGrain,prm%Nconstituents)
do iFace = 1,6
intFace = getInterface(iFace,iGrain3)
aVect = relaxationVector(intFace,instance,of)
nVect = interfaceNormal(intFace,instance,of)
forall (i=1:3,j=1:3) &
F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! effective relaxations
enddo
F(1:3,1:3,iGrain) = F(1:3,1:3,iGrain) + avgF ! relaxed deformation gradient
enddo
end associate
end subroutine grainDeformation
end function homogenization_RGC_updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
avgP = sum(P,3) /real(product(param(instance)%Nconstituents),pReal)
dAvgPdAvgF = sum(dPdF,5)/real(product(param(instance)%Nconstituents),pReal)
end subroutine homogenization_RGC_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion
!--------------------------------------------------------------------------------------------------
pure function homogenization_RGC_postResults(instance,of) result(postResults)
integer, intent(in) :: &
instance, &
of
integer :: &
o,c
real(pReal), dimension(sum(homogenization_RGC_sizePostResult(:,instance))) :: &
postResults
associate(stt => state(instance), dst => dependentState(instance), prm => param(instance))
c = 0
outputsLoop: do o = 1,size(prm%outputID)
select case(prm%outputID(o))
case (constitutivework_ID)
postResults(c+1) = stt%work(of)
c = c + 1
case (magnitudemismatch_ID)
postResults(c+1:c+3) = dst%mismatch(1:3,of)
c = c + 3
case (penaltyenergy_ID)
postResults(c+1) = stt%penaltyEnergy(of)
c = c + 1
case (volumediscrepancy_ID)
postResults(c+1) = dst%volumeDiscrepancy(of)
c = c + 1
case (averagerelaxrate_ID)
postResults(c+1) = dst%relaxationrate_avg(of)
c = c + 1
case (maximumrelaxrate_ID)
postResults(c+1) = dst%relaxationrate_max(of)
c = c + 1
end select
enddo outputsLoop
end associate
end function homogenization_RGC_postResults
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
! ToDo: check wheter units are correct
!--------------------------------------------------------------------------------------------------
subroutine mech_RGC_results(instance,group)
#if defined(PETSc) || defined(DAMASK_HDF5)
use results, only: &
results_writeDataset
integer, intent(in) :: instance
character(len=*) :: group
integer :: o
associate(stt => state(instance), dst => dependentState(instance), prm => param(instance))
outputsLoop: do o = 1,size(prm%outputID)
select case(prm%outputID(o))
case (constitutivework_ID)
call results_writeDataset(group,stt%work,'W',&
'work density','J/m³')
case (magnitudemismatch_ID)
call results_writeDataset(group,dst%mismatch,'N',&
'average mismatch tensor','1')
case (penaltyenergy_ID)
call results_writeDataset(group,stt%penaltyEnergy,'R',&
'mismatch penalty density','J/m³')
case (volumediscrepancy_ID)
call results_writeDataset(group,dst%volumeDiscrepancy,'Delta_V',&
'volume discrepancy','m³')
case (maximumrelaxrate_ID)
call results_writeDataset(group,dst%relaxationrate_max,'max_alpha_dot',&
'maximum relaxation rate','m/s')
case (averagerelaxrate_ID)
call results_writeDataset(group,dst%relaxationrate_avg,'avg_alpha_dot',&
'average relaxation rate','m/s')
end select
enddo outputsLoop
end associate
#else
integer, intent(in) :: instance
character(len=*) :: group
#endif
end subroutine mech_RGC_results
!--------------------------------------------------------------------------------------------------
!> @brief collect relaxation vectors of an interface
!--------------------------------------------------------------------------------------------------
pure function relaxationVector(intFace,instance,of)
real(pReal), dimension (3) :: relaxationVector
integer, intent(in) :: instance,of
integer, dimension(4), intent(in) :: intFace !< set of interface ID in 4D array (normal and position)
integer :: iNum
!--------------------------------------------------------------------------------------------------
! collect the interface relaxation vector from the global state array
iNum = interface4to1(intFace,param(instance)%Nconstituents) ! identify the position of the interface in global state array
if (iNum > 0) then
relaxationVector = state(instance)%relaxationVector((3*iNum-2):(3*iNum),of)
else
relaxationVector = 0.0_pReal
endif
end function relaxationVector
!--------------------------------------------------------------------------------------------------
!> @brief identify the normal of an interface
!--------------------------------------------------------------------------------------------------
pure function interfaceNormal(intFace,instance,of)
real(pReal), dimension(3) :: interfaceNormal
integer, dimension(4), intent(in) :: intFace !< interface ID in 4D array (normal and position)
integer, intent(in) :: &
instance, &
of
integer :: nPos
!--------------------------------------------------------------------------------------------------
! get the normal of the interface, identified from the value of intFace(1)
interfaceNormal = 0.0_pReal
nPos = abs(intFace(1)) ! identify the position of the interface in global state array
interfaceNormal(nPos) = real(intFace(1)/abs(intFace(1)),pReal) ! get the normal vector w.r.t. cluster axis
interfaceNormal = matmul(dependentState(instance)%orientation(1:3,1:3,of),interfaceNormal) ! map the normal vector into sample coordinate system (basis)
end function interfaceNormal
!--------------------------------------------------------------------------------------------------
!> @brief collect six faces of a grain in 4D (normal and position)
!--------------------------------------------------------------------------------------------------
pure function getInterface(iFace,iGrain3)
integer, dimension(4) :: getInterface
integer, dimension(3), intent(in) :: iGrain3 !< grain ID in 3D array
integer, intent(in) :: iFace !< face index (1..6) mapped like (-e1,-e2,-e3,+e1,+e2,+e3) or iDir = (-1,-2,-3,1,2,3)
integer :: iDir
!* Direction of interface normal
iDir = (int(real(iFace-1,pReal)/2.0_pReal)+1)*(-1)**iFace
getInterface(1) = iDir
!--------------------------------------------------------------------------------------------------
! identify the interface position by the direction of its normal
getInterface(2:4) = iGrain3
if (iDir < 0) getInterface(1-iDir) = getInterface(1-iDir)-1 ! to have a correlation with coordinate/position in real space
end function getInterface
!--------------------------------------------------------------------------------------------------
!> @brief map grain ID from in 1D (global array) to in 3D (local position)
!--------------------------------------------------------------------------------------------------
pure function grain1to3(grain1,nGDim)
integer, dimension(3) :: grain1to3
integer, intent(in) :: grain1 !< grain ID in 1D array
integer, dimension(3), intent(in) :: nGDim
grain1to3 = 1 + [mod((grain1-1),nGDim(1)), &
mod((grain1-1)/nGDim(1),nGDim(2)), &
(grain1-1)/(nGDim(1)*nGDim(2))]
end function grain1to3
!--------------------------------------------------------------------------------------------------
!> @brief map grain ID from in 3D (local position) to in 1D (global array)
!--------------------------------------------------------------------------------------------------
integer pure function grain3to1(grain3,nGDim)
integer, dimension(3), intent(in) :: grain3 !< grain ID in 3D array (pos.x,pos.y,pos.z)
integer, dimension(3), intent(in) :: nGDim
grain3to1 = grain3(1) &
+ nGDim(1)*(grain3(2)-1) &
+ nGDim(1)*nGDim(2)*(grain3(3)-1)
end function grain3to1
!--------------------------------------------------------------------------------------------------
!> @brief maps interface ID from 4D (normal and local position) into 1D (global array)
!--------------------------------------------------------------------------------------------------
integer pure function interface4to1(iFace4D, nGDim)
integer, dimension(4), intent(in) :: iFace4D !< interface ID in 4D array (n.dir,pos.x,pos.y,pos.z)
integer, dimension(3), intent(in) :: nGDim
select case(abs(iFace4D(1)))
case(1)
if ((iFace4D(2) == 0) .or. (iFace4D(2) == nGDim(1))) then
interface4to1 = 0
else
interface4to1 = iFace4D(3) + nGDim(2)*(iFace4D(4)-1) &
+ nGDim(2)*nGDim(3)*(iFace4D(2)-1)
endif
case(2)
if ((iFace4D(3) == 0) .or. (iFace4D(3) == nGDim(2))) then
interface4to1 = 0
else
interface4to1 = iFace4D(4) + nGDim(3)*(iFace4D(2)-1) &
+ nGDim(3)*nGDim(1)*(iFace4D(3)-1) &
+ (nGDim(1)-1)*nGDim(2)*nGDim(3) ! total number of interfaces normal //e1
endif
case(3)
if ((iFace4D(4) == 0) .or. (iFace4D(4) == nGDim(3))) then
interface4to1 = 0
else
interface4to1 = iFace4D(2) + nGDim(1)*(iFace4D(3)-1) &
+ nGDim(1)*nGDim(2)*(iFace4D(4)-1) &
+ (nGDim(1)-1)*nGDim(2)*nGDim(3) & ! total number of interfaces normal //e1
+ nGDim(1)*(nGDim(2)-1)*nGDim(3) ! total number of interfaces normal //e2
endif
case default
interface4to1 = -1
end select
end function interface4to1
!--------------------------------------------------------------------------------------------------
!> @brief maps interface ID from 1D (global array) into 4D (normal and local position)
!--------------------------------------------------------------------------------------------------
pure function interface1to4(iFace1D, nGDim)
integer, dimension(4) :: interface1to4
integer, intent(in) :: iFace1D !< interface ID in 1D array
integer, dimension(3), intent(in) :: nGDim
integer, dimension(3) :: nIntFace
!--------------------------------------------------------------------------------------------------
! compute the total number of interfaces, which ...
nIntFace = [(nGDim(1)-1)*nGDim(2)*nGDim(3), & ! ... normal //e1
nGDim(1)*(nGDim(2)-1)*nGDim(3), & ! ... normal //e2
nGDim(1)*nGDim(2)*(nGDim(3)-1)] ! ... normal //e3
!--------------------------------------------------------------------------------------------------
! get the corresponding interface ID in 4D (normal and local position)
if (iFace1D > 0 .and. iFace1D <= nIntFace(1)) then ! interface with normal //e1
interface1to4(1) = 1
interface1to4(3) = mod((iFace1D-1),nGDim(2))+1
interface1to4(4) = mod(int(real(iFace1D-1,pReal)/real(nGDim(2),pReal)),nGDim(3))+1
interface1to4(2) = int(real(iFace1D-1,pReal)/real(nGDim(2),pReal)/real(nGDim(3),pReal))+1
elseif (iFace1D > nIntFace(1) .and. iFace1D <= (nIntFace(2) + nIntFace(1))) then ! interface with normal //e2
interface1to4(1) = 2
interface1to4(4) = mod((iFace1D-nIntFace(1)-1),nGDim(3))+1
interface1to4(2) = mod(int(real(iFace1D-nIntFace(1)-1,pReal)/real(nGDim(3),pReal)),nGDim(1))+1
interface1to4(3) = int(real(iFace1D-nIntFace(1)-1,pReal)/real(nGDim(3),pReal)/real(nGDim(1),pReal))+1
elseif (iFace1D > nIntFace(2) + nIntFace(1) .and. iFace1D <= (nIntFace(3) + nIntFace(2) + nIntFace(1))) then ! interface with normal //e3
interface1to4(1) = 3
interface1to4(2) = mod((iFace1D-nIntFace(2)-nIntFace(1)-1),nGDim(1))+1
interface1to4(3) = mod(int(real(iFace1D-nIntFace(2)-nIntFace(1)-1,pReal)/real(nGDim(1),pReal)),nGDim(2))+1
interface1to4(4) = int(real(iFace1D-nIntFace(2)-nIntFace(1)-1,pReal)/real(nGDim(1),pReal)/real(nGDim(2),pReal))+1
endif
end function interface1to4
end module homogenization_mech_RGC