84 lines
3.1 KiB
Python
Executable File
84 lines
3.1 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os
|
|
import numpy as np
|
|
import argparse
|
|
import damask
|
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
scriptID = ' '.join([scriptName,damask.version])
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
parser = argparse.ArgumentParser()
|
|
|
|
#ToDo: We need to decide on a way of handling arguments of variable lentght
|
|
#https://stackoverflow.com/questions/15459997/passing-integer-lists-to-python
|
|
|
|
#parser.add_argument('--version', action='version', version='%(prog)s {}'.format(scriptID))
|
|
parser.add_argument('filenames', nargs='+',
|
|
help='DADF5 files')
|
|
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
|
|
help='name of subdirectory to hold output')
|
|
|
|
options = parser.parse_args()
|
|
|
|
options.labels = ['Fe','Fp','xi_sl']
|
|
|
|
# --- loop over input files ------------------------------------------------------------------------
|
|
|
|
for filename in options.filenames:
|
|
results = damask.DADF5(filename)
|
|
|
|
if not results.structured: continue
|
|
delta = results.size/results.grid*0.5
|
|
x, y, z = np.meshgrid(np.linspace(delta[2],results.size[2]-delta[2],results.grid[2]),
|
|
np.linspace(delta[1],results.size[1]-delta[1],results.grid[1]),
|
|
np.linspace(delta[0],results.size[0]-delta[0],results.grid[0]),
|
|
indexing = 'ij')
|
|
|
|
coords = np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
|
|
|
|
for i,inc in enumerate(results.increments):
|
|
print('Output step {}/{}'.format(i+1,len(results.increments)))
|
|
|
|
header = '1 header\n'
|
|
|
|
data = np.array([inc['inc'] for j in range(np.product(results.grid))]).reshape([np.product(results.grid),1])
|
|
header+= 'inc'
|
|
|
|
data = np.concatenate((data,np.array([j+1 for j in range(np.product(results.grid))]).reshape([np.product(results.grid),1])),1)
|
|
header+=' node'
|
|
|
|
coords = coords.reshape([np.product(results.grid),3])
|
|
data = np.concatenate((data,coords),1)
|
|
header+=' 1_pos 2_pos 3_pos'
|
|
|
|
results.active['increments'] = [inc]
|
|
for label in options.labels:
|
|
for o in results.c_output_types:
|
|
results.active['c_output_types'] = [o]
|
|
for c in results.constituents:
|
|
results.active['constituents'] = [c]
|
|
x = results.get_dataset_location(label)
|
|
if len(x) == 0:
|
|
continue
|
|
label = x[0].split('/')[-1]
|
|
array = results.read_dataset(x,0)
|
|
d = np.product(np.shape(array)[1:])
|
|
array = np.reshape(array,[np.product(results.grid),d])
|
|
data = np.concatenate((data,array),1)
|
|
|
|
header+= ''.join([' {}_{}'.format(j+1,label) for j in range(d)])
|
|
|
|
|
|
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
|
|
try:
|
|
os.mkdir(dirname)
|
|
except FileExistsError:
|
|
pass
|
|
file_out = '{}_inc{:04d}.txt'.format(filename.split('.')[0],i)
|
|
np.savetxt(os.path.join(dirname,file_out),data,header=header,comments='')
|