DAMASK_EICMD/lib/damask/h5table.py

130 lines
4.7 KiB
Python

# -*- coding: UTF-8 no BOM -*-
# ----------------------------------------------------------- #
# Ideally the h5py should be enough to serve as the data #
# interface for future DAMASK, but since we are still not #
# sure when this major shift will happen, it seems to be a #
# good idea to provide a interface class that help user ease #
# into using HDF5 as the new daily storage driver. #
# ----------------------------------------------------------- #
import os
import sys
import h5py
import numpy as np
import xml.etree.cElementTree as ET
# ---------------------------------------------------------------- #
# python 3 has no unicode object, this ensures that the code works #
# on Python 2&3 #
# ---------------------------------------------------------------- #
try:
test=isinstance('test', unicode)
except(NameError):
unicode=str
# ------------------------------------------------------- #
# Singleton class for converting feature name to H5F path #
# ------------------------------------------------------- #
# NOTE:
# use simple function to mimic the singleton class in
# C++/Java
def lables_to_path(label, dsXMLPath=None):
""" read the xml definition file and return the path."""
if dsXMLPath is None:
# use the default storage layout in DS_HDF5.xml
dsXMLPath = os.path.abspath(__file__).replace("h5table.py",
"DS_HDF5.xml")
# This current implementation requires that all variables
# stay under the root node, the nesting is defined through the
# h5path. This could be improved easily with more advanced parsing
# using ET interface, but for now I can not see the benefits in doing
# so.
tree = ET.parse(dsXMLPath)
dataType = tree.find('{}/type'.format(label)).text
h5path = tree.find('{}/h5path'.format(label)).text
return (dataType, h5path)
# ----------------------- #
# H5Table interface class #
# ----------------------- #
class H5Table(object):
"""
DESCRIPTION
-----------
Interface class for manipulating data in HDF5 with DAMASK
specialized data structure.
PARAMETERS
----------
h5f_path: str
Absolute path the HDF5 file
METHOD
------
del_entry()
get_attr()
add_attr()
get_data()
add_data()
get_cmdlog()
Return the command used to generate the data if possible.
NOTE
----
1. As an interface class, it uses the lazy evaluation design
that read the data only when its absolutely necessary.
2. The command line used to generate new feature is stored with
each dataset as dataset attribute.
"""
def __init__(self, h5f_path):
"""
"""
self.h5f_path = h5f_path
def del_entry(self, feature_name):
""" delete entry in HDF5 table """
# WARNING: this will PERMENANTLY delete attributes/dataset
# use with caution
dataType, h5f_path = lables_to_path(feature_name)
h5f = h5py.File(self.h5f_path, 'a')
del h5f[h5f_path]
def get_attr(self, attr_name):
h5f = h5py.File(self.h5f_path, 'r')
dataType, h5f_path = lables_to_path(attr_name)
return h5f[h5f_path].attrs[attr_name]
def add_attr(self, attr_name, attr_data):
h5f = h5py.File(self.h5f_path, 'a')
dataType, h5f_path = lables_to_path(attr_name)
if dataType == "attr":
h5f[h5f_path].attrs[attr_name] = attr_data
else:
raise ValueError("Unspported attr: {}".format(attr_name))
def get_data(self, feature_name=None):
""" extract dataset from HDF5 table and return it in a numpy array """
dataType, h5f_path = lables_to_path(feature_name)
h5f = h5py.File(self.h5f_path, 'r')
h5f_dst = h5f[h5f_path] # get the handle for target dataset(table)
return h5f_dst.read_direct(np.zeros(h5f_dst.shape))
def add_data(self, feature_name, dataset=None, cmd_log=None):
""" adding new feature into existing HDF5 file """
dataType, h5f_path = lables_to_path(feature_name)
if dataType is not "attr":
h5f = h5py.File(self.h5f_path, 'a')
h5f.create_dataset(h5f_path, data=dataset)
# store the cmd in log is possible
if cmd_log is not None:
h5f[h5f_path].attrs['log'] = str(cmd_log)
else:
raise ValueError("feature {} isn't valid".format(feature_name))
def get_cmdlog(self, feature_name):
""" get cmd history used to generate the feature"""
dataType, h5f_path = lables_to_path(feature_name)
h5f = ht5py.File(self.h5f_path, 'r')
return h5f[h5f_path].attrs['log']