DAMASK_EICMD/src/phase.f90

682 lines
24 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief elasticity, plasticity, damage & thermal internal microstructure state
!--------------------------------------------------------------------------------------------------
module phase
use prec
use math
use rotations
use IO
use config
use material
use results
use lattice
use discretization
use parallelization
use HDF5
use HDF5_utilities
implicit none
private
character(len=2), allocatable, dimension(:) :: phase_lattice
real(pReal), allocatable, dimension(:) :: phase_cOverA
real(pReal), allocatable, dimension(:) :: phase_rho
type(tRotationContainer), dimension(:), allocatable :: &
phase_O_0, &
phase_O
type :: tNumerics
integer :: &
iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp
nState, & !< state loop limit
nStress !< stress loop limit
real(pReal) :: &
subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback
subStepSizeCryst, & !< size of first substep when cutback
subStepSizeLp, & !< size of first substep when cutback in Lp calculation
subStepSizeLi, & !< size of first substep when cutback in Li calculation
stepIncreaseCryst, & !< increase of next substep size when previous substep converged
rtol_crystalliteState, & !< relative tolerance in state loop
rtol_crystalliteStress, & !< relative tolerance in stress loop
atol_crystalliteStress !< absolute tolerance in stress loop
end type tNumerics
type(tNumerics) :: num ! numerics parameters. Better name?
type :: tDebugOptions
logical :: &
basic, &
extensive, &
selective
integer :: &
element, &
ip, &
grain
end type tDebugOptions
type(tPlasticState), allocatable, dimension(:), public :: &
plasticState
type(tState), allocatable, dimension(:), public :: &
damageState
interface
! == cleaned:begin =================================================================================
module subroutine mechanical_init(materials,phases)
class(tNode), pointer :: materials,phases
end subroutine mechanical_init
module subroutine damage_init
end subroutine damage_init
module subroutine thermal_init(phases)
class(tNode), pointer :: phases
end subroutine thermal_init
module subroutine mechanical_results(group,ph)
character(len=*), intent(in) :: group
integer, intent(in) :: ph
end subroutine mechanical_results
module subroutine damage_results(group,ph)
character(len=*), intent(in) :: group
integer, intent(in) :: ph
end subroutine damage_results
module subroutine mechanical_forward()
end subroutine mechanical_forward
module subroutine damage_forward()
end subroutine damage_forward
module subroutine thermal_forward()
end subroutine thermal_forward
module subroutine mechanical_restore(ce,includeL)
integer, intent(in) :: ce
logical, intent(in) :: includeL
end subroutine mechanical_restore
module subroutine damage_restore(ce)
integer, intent(in) :: ce
end subroutine damage_restore
module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF)
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
co, & !< counter in constituent loop
ce
real(pReal), dimension(3,3,3,3) :: dPdF
end function phase_mechanical_dPdF
module subroutine mechanical_restartWrite(groupHandle,ph)
integer(HID_T), intent(in) :: groupHandle
integer, intent(in) :: ph
end subroutine mechanical_restartWrite
module subroutine mechanical_restartRead(groupHandle,ph)
integer(HID_T), intent(in) :: groupHandle
integer, intent(in) :: ph
end subroutine mechanical_restartRead
module function mechanical_S(ph,en) result(S)
integer, intent(in) :: ph,en
real(pReal), dimension(3,3) :: S
end function mechanical_S
module function mechanical_L_p(ph,en) result(L_p)
integer, intent(in) :: ph,en
real(pReal), dimension(3,3) :: L_p
end function mechanical_L_p
module function mechanical_F_e(ph,en) result(F_e)
integer, intent(in) :: ph,en
real(pReal), dimension(3,3) :: F_e
end function mechanical_F_e
module function phase_F(co,ce) result(F)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: F
end function phase_F
module function phase_P(co,ce) result(P)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: P
end function phase_P
module function thermal_T(ph,en) result(T)
integer, intent(in) :: ph,en
real(pReal) :: T
end function thermal_T
module function thermal_dot_T(ph,en) result(dot_T)
integer, intent(in) :: ph,en
real(pReal) :: dot_T
end function thermal_dot_T
module function damage_phi(ph,en) result(phi)
integer, intent(in) :: ph,en
real(pReal) :: phi
end function damage_phi
module subroutine phase_set_F(F,co,ce)
real(pReal), dimension(3,3), intent(in) :: F
integer, intent(in) :: co, ce
end subroutine phase_set_F
module subroutine phase_thermal_setField(T,dot_T, co,ce)
real(pReal), intent(in) :: T, dot_T
integer, intent(in) :: co, ce
end subroutine phase_thermal_setField
module subroutine phase_set_phi(phi,co,ce)
real(pReal), intent(in) :: phi
integer, intent(in) :: co, ce
end subroutine phase_set_phi
module function phase_mu_phi(co,ce) result(mu)
integer, intent(in) :: co, ce
real(pReal) :: mu
end function phase_mu_phi
module function phase_K_phi(co,ce) result(K)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: K
end function phase_K_phi
module function phase_mu_T(co,ce) result(mu)
integer, intent(in) :: co, ce
real(pReal) :: mu
end function phase_mu_T
module function phase_K_T(co,ce) result(K)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: K
end function phase_K_T
! == cleaned:end ===================================================================================
module function phase_thermal_constitutive(Delta_t,ph,en) result(converged_)
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: ph, en
logical :: converged_
end function phase_thermal_constitutive
module function phase_damage_constitutive(Delta_t,co,ip,el) result(converged_)
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co, ip, el
logical :: converged_
end function phase_damage_constitutive
module function phase_mechanical_constitutive(Delta_t,co,ip,el) result(converged_)
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co, ip, el
logical :: converged_
end function phase_mechanical_constitutive
!ToDo: Merge all the stiffness functions
module function phase_homogenizedC(ph,en) result(C)
integer, intent(in) :: ph, en
real(pReal), dimension(6,6) :: C
end function phase_homogenizedC
module function phase_damage_C(C_homogenized,ph,en) result(C)
real(pReal), dimension(3,3,3,3), intent(in) :: C_homogenized
integer, intent(in) :: ph,en
real(pReal), dimension(3,3,3,3) :: C
end function phase_damage_C
module function phase_f_phi(phi,co,ce) result(f)
integer, intent(in) :: ce,co
real(pReal), intent(in) :: &
phi !< damage parameter
real(pReal) :: &
f
end function phase_f_phi
module function phase_f_T(ph,en) result(f)
integer, intent(in) :: ph, en
real(pReal) :: f
end function phase_f_T
module subroutine plastic_nonlocal_updateCompatibility(orientation,ph,i,e)
integer, intent(in) :: &
ph, &
i, &
e
type(tRotationContainer), dimension(:), intent(in) :: orientation
end subroutine plastic_nonlocal_updateCompatibility
module subroutine plastic_dependentState(co,ip,el)
integer, intent(in) :: &
co, & !< component-ID of integration point
ip, & !< integration point
el !< element
end subroutine plastic_dependentState
module subroutine damage_anisobrittle_LiAndItsTangent(Ld, dLd_dTstar, S, ph,en)
integer, intent(in) :: ph, en
real(pReal), intent(in), dimension(3,3) :: &
S
real(pReal), intent(out), dimension(3,3) :: &
Ld !< damage velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor)
end subroutine damage_anisobrittle_LiAndItsTangent
end interface
type(tDebugOptions) :: debugConstitutive
#if __INTEL_COMPILER >= 1900
public :: &
prec, &
math, &
rotations, &
IO, &
config, &
material, &
results, &
lattice, &
discretization, &
HDF5_utilities
#endif
public :: &
phase_init, &
phase_homogenizedC, &
phase_f_phi, &
phase_f_T, &
phase_K_phi, &
phase_K_T, &
phase_mu_phi, &
phase_mu_T, &
phase_results, &
phase_allocateState, &
phase_forward, &
phase_restore, &
plastic_nonlocal_updateCompatibility, &
converged, &
crystallite_init, &
phase_mechanical_constitutive, &
phase_thermal_constitutive, &
phase_damage_constitutive, &
phase_mechanical_dPdF, &
crystallite_orientations, &
crystallite_push33ToRef, &
phase_restartWrite, &
phase_restartRead, &
phase_thermal_setField, &
phase_set_phi, &
phase_P, &
phase_set_F, &
phase_F
contains
!--------------------------------------------------------------------------------------------------
!> @brief Initialize constitutive models for individual physics
!--------------------------------------------------------------------------------------------------
subroutine phase_init
integer :: &
ph, ce, co, ma
class (tNode), pointer :: &
debug_constitutive, &
materials, &
phases, &
phase
print'(/,a)', ' <<<+- phase init -+>>>'; flush(IO_STDOUT)
debug_constitutive => config_debug%get('phase', defaultVal=emptyList)
debugConstitutive%basic = debug_constitutive%contains('basic')
debugConstitutive%extensive = debug_constitutive%contains('extensive')
debugConstitutive%selective = debug_constitutive%contains('selective')
debugConstitutive%element = config_debug%get_asInt('element', defaultVal = 1)
debugConstitutive%ip = config_debug%get_asInt('integrationpoint',defaultVal = 1)
debugConstitutive%grain = config_debug%get_asInt('constituent', defaultVal = 1)
materials => config_material%get('material')
phases => config_material%get('phase')
allocate(phase_lattice(phases%length))
allocate(phase_cOverA(phases%length),source=-1.0_pReal)
allocate(phase_rho(phases%length))
allocate(phase_O_0(phases%length))
do ph = 1,phases%length
phase => phases%get(ph)
phase_lattice(ph) = phase%get_asString('lattice')
if (all(phase_lattice(ph) /= ['cF','cI','hP','tI'])) &
call IO_error(130,ext_msg='phase_init: '//phase%get_asString('lattice'))
if (any(phase_lattice(ph) == ['hP','tI'])) &
phase_cOverA(ph) = phase%get_asFloat('c/a')
phase_rho(ph) = phase%get_asFloat('rho',defaultVal=0.0_pReal)
allocate(phase_O_0(ph)%data(count(material_phaseID==ph)))
enddo
do ce = 1, size(material_phaseID,2)
ma = discretization_materialAt((ce-1)/discretization_nIPs+1)
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce))
ph = material_phaseID(co,ce)
phase_O_0(ph)%data(material_phaseEntry(co,ce)) = material_O_0(ma)%data(co)
enddo
enddo
allocate(phase_O(phases%length))
do ph = 1,phases%length
phase_O(ph)%data = phase_O_0(ph)%data
enddo
call mechanical_init(materials,phases)
call damage_init
call thermal_init(phases)
end subroutine phase_init
!--------------------------------------------------------------------------------------------------
!> @brief Allocate the components of the state structure for a given phase
!--------------------------------------------------------------------------------------------------
subroutine phase_allocateState(state, &
NEntries,sizeState,sizeDotState,sizeDeltaState)
class(tState), intent(inout) :: &
state
integer, intent(in) :: &
NEntries, &
sizeState, &
sizeDotState, &
sizeDeltaState
state%sizeState = sizeState
state%sizeDotState = sizeDotState
state%sizeDeltaState = sizeDeltaState
state%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
allocate(state%atol (sizeState), source=0.0_pReal)
allocate(state%state0 (sizeState,NEntries), source=0.0_pReal)
allocate(state%state (sizeState,NEntries), source=0.0_pReal)
allocate(state%dotState (sizeDotState,NEntries), source=0.0_pReal)
allocate(state%deltaState (sizeDeltaState,NEntries), source=0.0_pReal)
end subroutine phase_allocateState
!--------------------------------------------------------------------------------------------------
!> @brief Restore data after homog cutback.
!--------------------------------------------------------------------------------------------------
subroutine phase_restore(ce,includeL)
logical, intent(in) :: includeL
integer, intent(in) :: ce
call mechanical_restore(ce,includeL)
call damage_restore(ce)
end subroutine phase_restore
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
!--------------------------------------------------------------------------------------------------
subroutine phase_forward()
call mechanical_forward()
call damage_forward()
call thermal_forward()
end subroutine phase_forward
!--------------------------------------------------------------------------------------------------
!> @brief writes constitutive results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine phase_results()
integer :: ph
character(len=:), allocatable :: group
call results_closeGroup(results_addGroup('/current/phase/'))
do ph = 1, size(material_name_phase)
group = '/current/phase/'//trim(material_name_phase(ph))//'/'
call results_closeGroup(results_addGroup(group))
call mechanical_results(group,ph)
call damage_results(group,ph)
enddo
end subroutine phase_results
!--------------------------------------------------------------------------------------------------
!> @brief allocates and initialize per grain variables
!--------------------------------------------------------------------------------------------------
subroutine crystallite_init()
integer :: &
ph, &
ce, &
co, & !< counter in integration point component loop
ip, & !< counter in integration point loop
el, & !< counter in element loop
cMax, & !< maximum number of integration point components
iMax, & !< maximum number of integration points
eMax !< maximum number of elements
class(tNode), pointer :: &
num_crystallite, &
phases
print'(/,a)', ' <<<+- crystallite init -+>>>'
cMax = homogenization_maxNconstituents
iMax = discretization_nIPs
eMax = discretization_Nelems
num_crystallite => config_numerics%get('crystallite',defaultVal=emptyDict)
num%subStepMinCryst = num_crystallite%get_asFloat ('subStepMin', defaultVal=1.0e-3_pReal)
num%subStepSizeCryst = num_crystallite%get_asFloat ('subStepSize', defaultVal=0.25_pReal)
num%stepIncreaseCryst = num_crystallite%get_asFloat ('stepIncrease', defaultVal=1.5_pReal)
num%subStepSizeLp = num_crystallite%get_asFloat ('subStepSizeLp', defaultVal=0.5_pReal)
num%subStepSizeLi = num_crystallite%get_asFloat ('subStepSizeLi', defaultVal=0.5_pReal)
num%rtol_crystalliteState = num_crystallite%get_asFloat ('rtol_State', defaultVal=1.0e-6_pReal)
num%rtol_crystalliteStress = num_crystallite%get_asFloat ('rtol_Stress', defaultVal=1.0e-6_pReal)
num%atol_crystalliteStress = num_crystallite%get_asFloat ('atol_Stress', defaultVal=1.0e-8_pReal)
num%iJacoLpresiduum = num_crystallite%get_asInt ('iJacoLpresiduum', defaultVal=1)
num%nState = num_crystallite%get_asInt ('nState', defaultVal=20)
num%nStress = num_crystallite%get_asInt ('nStress', defaultVal=40)
if(num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst')
if(num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst')
if(num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst')
if(num%subStepSizeLp <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLp')
if(num%subStepSizeLi <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLi')
if(num%rtol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteState')
if(num%rtol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteStress')
if(num%atol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='atol_crystalliteStress')
if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum')
if(num%nState < 1) call IO_error(301,ext_msg='nState')
if(num%nStress< 1) call IO_error(301,ext_msg='nStress')
phases => config_material%get('phase')
print'(a42,1x,i10)', ' # of elements: ', eMax
print'(a42,1x,i10)', ' # of integration points/element: ', iMax
print'(a42,1x,i10)', 'max # of constituents/integration point: ', cMax
flush(IO_STDOUT)
!$OMP PARALLEL DO PRIVATE(ce)
do el = 1, eMax
do ip = 1, iMax
ce = (el-1)*discretization_nIPs + ip
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce))
call crystallite_orientations(co,ip,el)
call plastic_dependentState(co,ip,el) ! update dependent state variables to be consistent with basic states
enddo
enddo
enddo
!$OMP END PARALLEL DO
end subroutine crystallite_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates orientations
!--------------------------------------------------------------------------------------------------
subroutine crystallite_orientations(co,ip,el)
integer, intent(in) :: &
co, & !< counter in integration point component loop
ip, & !< counter in integration point loop
el !< counter in element loop
integer :: ph, en
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
call phase_O(ph)%data(en)%fromMatrix(transpose(math_rotationalPart(mechanical_F_e(ph,en))))
if (plasticState(material_phaseAt(1,el))%nonlocal) &
call plastic_nonlocal_updateCompatibility(phase_O,material_phaseAt(1,el),ip,el)
end subroutine crystallite_orientations
!--------------------------------------------------------------------------------------------------
!> @brief Map 2nd order tensor to reference config
!--------------------------------------------------------------------------------------------------
function crystallite_push33ToRef(co,ce, tensor33)
real(pReal), dimension(3,3), intent(in) :: tensor33
integer, intent(in):: &
co, &
ce
real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3) :: T
integer :: ph, en
ph = material_phaseID(co,ce)
en = material_phaseEntry(co,ce)
T = matmul(phase_O_0(ph)%data(en)%asMatrix(),transpose(math_inv33(phase_F(co,ce)))) ! ToDo: initial orientation correct?
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))
end function crystallite_push33ToRef
!--------------------------------------------------------------------------------------------------
!> @brief determines whether a point is converged
!--------------------------------------------------------------------------------------------------
logical pure function converged(residuum,state,atol)
real(pReal), intent(in), dimension(:) ::&
residuum, state, atol
real(pReal) :: &
rTol
rTol = num%rTol_crystalliteState
converged = all(abs(residuum) <= max(atol, rtol*abs(state)))
end function converged
!--------------------------------------------------------------------------------------------------
!> @brief Write restart data to file.
!--------------------------------------------------------------------------------------------------
subroutine phase_restartWrite(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ph
groupHandle(1) = HDF5_addGroup(fileHandle,'phase')
do ph = 1, size(material_name_phase)
groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_phase(ph))
call mechanical_restartWrite(groupHandle(2),ph)
call HDF5_closeGroup(groupHandle(2))
enddo
call HDF5_closeGroup(groupHandle(1))
end subroutine phase_restartWrite
!--------------------------------------------------------------------------------------------------
!> @brief Read restart data from file.
!--------------------------------------------------------------------------------------------------
subroutine phase_restartRead(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ph
groupHandle(1) = HDF5_openGroup(fileHandle,'phase')
do ph = 1, size(material_name_phase)
groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_phase(ph))
call mechanical_restartRead(groupHandle(2),ph)
call HDF5_closeGroup(groupHandle(2))
enddo
call HDF5_closeGroup(groupHandle(1))
end subroutine phase_restartRead
end module phase