DAMASK_EICMD/trunk/mpie_cpfem_marc2008r1.f90

299 lines
12 KiB
Fortran

!********************************************************************
! Material subroutine for MSC.Marc Version 0.1
!
! written by F. Roters, P. Eisenlohr, L. Hantcherli, W.A. Counts
! MPI fuer Eisenforschung, Duesseldorf
!
! last modified: 22.11.2008
!********************************************************************
! Usage:
! - choose material as hypela2
! - set statevariable 2 to index of homogenization
! - set statevariable 3 to index of microstructure
! - make sure the file "material.config" exists in the working
! directory
! - use nonsymmetric option for solver (e.g. direct
! profile or multifrontal sparse, the latter seems
! to be faster!)
! - in case of ddm a symmetric solver has to be used
!********************************************************************
! Marc subroutines used:
! - hypela2
! - plotv
! - quit
!********************************************************************
! Marc common blocks included:
! - concom: lovl, ncycle, inc, incsub
! - creeps: timinc
!********************************************************************
!
include "prec.f90" ! uses nothing else
include "debug.f90" ! uses prec
include "math.f90" ! uses prec
include "IO.f90" ! uses prec, debug, math
include "FEsolving.f90" ! uses prec, IO
include "mesh.f90" ! uses prec, IO, math, FEsolving
include "lattice.f90" ! uses prec, math
include "material.f90" ! uses prec, math, IO, mesh
include "constitutive_phenomenological.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_j2.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_dislobased.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive.f90" ! uses prec, IO, math, lattice, mesh, debug
include "CPFEM.f90" ! uses prec, math, mesh, constitutive, FEsolving, debug, lattice, IO, crystallite
SUBROUTINE hypela2(d,g,e,de,s,t,dt,ngens,n,nn,kcus,matus,ndi,&
nshear,disp,dispt,coord,ffn,frotn,strechn,eigvn,ffn1,&
frotn1,strechn1,eigvn1,ncrd,itel,ndeg,ndm,&
nnode,jtype,lclass,ifr,ifu)
!********************************************************************
! This is the Marc material routine
!********************************************************************
!
! ************* user subroutine for defining material behavior **************
!
!
! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and
! Rotation tensors at previous and current states, the analysis can be
! computationally expensive. Please use the user subroutine -> hypela
! if these kinematic quantities are not needed in the constitutive model
!
!
! IMPORTANT NOTES :
!
! (1) F,R,U are only available for continuum and membrane elements (not for
! shells and beams).
!
! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(=
! total Lagrange with large disp) in the parameter section of input deck.
! For updated Lagrangian formulation use the -> 'Plasticity,3' card(=
! update+finite+large disp+constant d) in the parameter section of
! input deck.
!
!
! d stress strain law to be formed
! g change in stress due to temperature effects
! e total elastic strain
! de increment of strain
! s stress - should be updated by user
! t state variables (comes in at t=n, must be updated
! to have state variables at t=n+1)
! dt increment of state variables
! ngens size of stress - strain law
! n element number
! nn integration point number
! kcus(1) layer number
! kcus(2) internal layer number
! matus(1) user material identification number
! matus(2) internal material identification number
! ndi number of direct components
! nshear number of shear components
! disp incremental displacements
! dispt displacements at t=n (at assembly, lovl=4) and
! displacements at t=n+1 (at stress recovery, lovl=6)
! coord coordinates
! ncrd number of coordinates
! ndeg number of degrees of freedom
! itel dimension of F and R, either 2 or 3
! nnode number of nodes per element
! jtype element type
! lclass element class
! ifr set to 1 if R has been calculated
! ifu set to 1 if strech has been calculated
!
! at t=n :
!
! ffn deformation gradient
! frotn rotation tensor
! strechn square of principal stretch ratios, lambda(i)
! eigvn(i,j) i principal direction components for j eigenvalues
!
! at t=n+1 :
!
! ffn1 deformation gradient
! frotn1 rotation tensor
! strechn1 square of principal stretch ratios, lambda(i)
! eigvn1(i,j) i principal direction components for j eigenvalues
!
! The following operation obtains U (stretch tensor) at t=n+1 :
!
! call scla(un1,0.d0,itel,itel,1)
! do 3 k=1,3
! do 2 i=1,3
! do 1 j=1,3
! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k)
!1 continue
!2 continue
!3 continue
!
use prec, only: pReal,pInt, ijaco
use FEsolving
use CPFEM, only: CPFEM_general
use math, only: invnrmMandel
use debug
!
implicit none
! ** Start of generated type statements **
real(pReal) coord, d, de, disp, dispt, dt, e, eigvn, eigvn1, ffn, ffn1
real(pReal) frotn, frotn1, g
integer(pInt) ifr, ifu, itel, jtype, kcus, lclass, matus, n, ncrd, ndeg
integer(pInt) ndi, ndm, ngens, nn, nnode, nshear
real(pReal) s, strechn, strechn1, t
! ** End of generated type statements **
!
dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),&
frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2)
! Marc common blocks are in fixed format so they have to be reformated to free format (f90)
! Beware of changes in newer Marc versions
include "concom2008r1" ! concom is needed for inc, subinc, ncycle, lovl
include "creeps2008r1" ! creeps is needed for timinc (time increment)
integer(pInt) computationMode,i
! write(6,'(3(3(f10.3,x),/))') ffn1(:,1),ffn1(:,2),ffn1(:,3)
if (inc == 0) then
cycleCounter = 4
else
if (theCycle > ncycle .or. theInc /= inc) cycleCounter = 0 ! reset counter for each cutback or new inc
if (theCycle /= ncycle .or. theLovl /= lovl) then
cycleCounter = cycleCounter+1 ! ping pong
outdatedFFN1 = .false.
write (6,*) n(1),nn,'cycleCounter',cycleCounter
call debug_info() ! output of debugging/performance statistics of former
debug_cutbackDistribution = 0_pInt ! initialize debugging data
debug_InnerLoopDistribution = 0_pInt
debug_OuterLoopDistribution = 0_pInt
debug_cumLpTicks = 0
debug_cumLpCalls = 0_pInt
endif
endif
if (cptim > theTime .or. theInc /= inc) then ! reached convergence
lastIncConverged = .true.
outdatedByNewInc = .true.
write (6,*) n(1),nn,'lastIncConverged + outdated'
endif
if (mod(cycleCounter,2) /= 0) computationMode = 4 ! recycle in odd cycles
if (mod(cycleCounter,4) == 2) computationMode = 3 ! collect in 2,6,10,...
if (mod(cycleCounter,4) == 0) computationMode = 2 ! compute in 0,4,8,...
if (computationMode == 4 .and. ncycle == 0 .and. .not. lastIncConverged) &
computationMode = 6 ! recycle but restore known good consistent tangent
if (computationMode == 4 .and. lastIncConverged) then
computationMode = 5 ! recycle and record former consistent tangent
lastIncConverged = .false.
endif
if (computationMode == 2 .and. outdatedByNewInc) then
computationMode = 1 ! compute and age former results
outdatedByNewInc = .false.
endif
theTime = cptim ! record current starting time
theInc = inc ! record current increment number
theCycle = ncycle ! record current cycle count
theLovl = lovl ! record current lovl
call CPFEM_general(computationMode,ffn,ffn1,t(1),timinc,n(1),nn,s,mod(cycleCounter-4,4_pInt*ijaco)==0,d,ngens)
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! Marc: 11, 22, 33, 12, 23, 13
forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*d(1:ngens,i)*invnrmMandel(1:ngens)
s(1:ngens) = s(1:ngens)*invnrmMandel(1:ngens)
if(symmetricSolver) d(1:ngens,1:ngens) = 0.5_pReal*(d(1:ngens,1:ngens)+transpose(d(1:ngens,1:ngens)))
return
END SUBROUTINE
!
SUBROUTINE plotv(v,s,sp,etot,eplas,ecreep,t,m,nn,layer,ndi,nshear,jpltcd)
!********************************************************************
! This routine sets user defined output variables for Marc
!********************************************************************
!
! select a variable contour plotting (user subroutine).
!
! v variable
! s (idss) stress array
! sp stresses in preferred direction
! etot total strain (generalized)
! eplas total plastic strain
! ecreep total creep strain
! t current temperature
! m element number
! nn integration point number
! layer layer number
! ndi (3) number of direct stress components
! nshear (3) number of shear stress components
!
!********************************************************************
use prec, only: pReal,pInt
use CPFEM, only: CPFEM_results, CPFEM_Nresults
use constitutive, only: constitutive_maxSizePostResults
use mesh, only: mesh_FEasCP
implicit none
!
real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*)
real(pReal) v, t(*)
integer(pInt) m, nn, layer, ndi, nshear, jpltcd
!
! assign result variable
v = CPFEM_results(mod(jpltcd-1_pInt, CPFEM_Nresults+constitutive_maxSizePostResults)+1_pInt,&
(jpltcd-1_pInt)/(CPFEM_Nresults+constitutive_maxSizePostResults)+1_pInt,&
nn, mesh_FEasCP('elem', m))
return
END SUBROUTINE
!
!
! subroutine utimestep(timestep,timestepold,icall,time,timeloadcase)
!********************************************************************
! This routine modifies the addaptive time step of Marc
!********************************************************************
! use prec, only: pReal,pInt
! use CPFEM, only : CPFEM_timefactor_max
! implicit none
!
! real(pReal) timestep, timestepold, time,timeloadcase
! integer(pInt) icall
!
! user subroutine for modifying the time step in auto step
!
! timestep : the current time step as suggested by marc
! to be modified in this routine
! timestepold : the current time step before it was modified by marc
! icall : =1 for setting the initial time step
! =2 if this routine is called during an increment
! =3 if this routine is called at the beginning
! of the increment
! time : time at the start of the current increment
! timeloadcase: time period of the current load case
!
! it is in general not recommended to increase the time step
! during the increment.
! this routine is called right after the time step has (possibly)
! been updated by marc.
!
! user coding
! reduce timestep during increment in case mpie_timefactor is too large
! if(icall==2_pInt) then
! if(mpie_timefactor_max>1.25_pReal) then
! timestep=min(timestep,timestepold*0.8_pReal)
! end if
! return
! modify timestep at beginning of new increment
! else if(icall==3_pInt) then
! if(mpie_timefactor_max<=0.8_pReal) then
! timestep=min(timestep,timestepold*1.25_pReal)
! else if (mpie_timefactor_max<=1.0_pReal) then
! timestep=min(timestep,timestepold/mpie_timefactor_max)
! else if (mpie_timefactor_max<=1.25_pReal) then
! timestep=min(timestep,timestepold*1.01_pReal)
! else
! timestep=min(timestep,timestepold*0.8_pReal)
! end if
! end if
! return
! end