DAMASK_EICMD/src/mesh_grid.f90

481 lines
22 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Parse geometry file to set up discretization and geometry for nonlocal model
!--------------------------------------------------------------------------------------------------
module mesh
#include <petsc/finclude/petscsys.h>
use PETScsys
use prec
use system_routines
use DAMASK_interface
use IO
use debug
use numerics
use discretization
use geometry_plastic_nonlocal
use FEsolving
implicit none
private
real(pReal), dimension(:,:,:), allocatable, public :: &
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
integer, dimension(3), public, protected :: &
grid !< (global) grid
integer, public, protected :: &
grid3, & !< (local) grid in 3rd direction
grid3Offset !< (local) grid offset in 3rd direction
real(pReal), dimension(3), public, protected :: &
geomSize
real(pReal), public, protected :: &
size3, & !< (local) size in 3rd direction
size3offset !< (local) size offset in 3rd direction
public :: &
mesh_init
contains
!--------------------------------------------------------------------------------------------------
!> @brief reads the geometry file to obtain information on discretization
!--------------------------------------------------------------------------------------------------
subroutine mesh_init(ip,el)
integer, intent(in), optional :: el, ip ! for compatibility reasons
include 'fftw3-mpi.f03'
real(pReal), dimension(3) :: &
mySize !< domain size of this process
integer, dimension(3) :: &
myGrid !< domain grid of this process
integer, dimension(:), allocatable :: &
microstructureAt, &
homogenizationAt
integer :: j
integer(C_INTPTR_T) :: &
devNull, z, z_offset
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
call readGeom(grid,geomSize,microstructureAt,homogenizationAt)
!--------------------------------------------------------------------------------------------------
! grid solver specific quantities
if(worldsize>grid(3)) call IO_error(894, ext_msg='number of processes exceeds grid(3)')
call fftw_mpi_init
devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), &
int(grid(2),C_INTPTR_T), &
int(grid(1),C_INTPTR_T)/2+1, &
PETSC_COMM_WORLD, &
z, & ! domain grid size along z
z_offset) ! domain grid offset along z
grid3 = int(z)
grid3Offset = int(z_offset)
size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal)
size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal)
myGrid = [grid(1:2),grid3]
mySize = [geomSize(1:2),size3]
!--------------------------------------------------------------------------------------------------
! general discretization
microstructureAt = microstructureAt(product(grid(1:2))*grid3Offset+1: &
product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI
homogenizationAt = homogenizationAt(product(grid(1:2))*grid3Offset+1: &
product(grid(1:2))*(grid3Offset+grid3)) ! reallocate/shrink in case of MPI
mesh_ipCoordinates = IPcoordinates(myGrid,mySize,grid3Offset)
call discretization_init(homogenizationAt,microstructureAt, &
reshape(mesh_ipCoordinates,[3,product(myGrid)]), &
Nodes(myGrid,mySize,grid3Offset))
FEsolving_execElem = [1,product(myGrid)] ! parallel loop bounds set to comprise all elements
allocate(FEsolving_execIP(2,product(myGrid)),source=1) ! parallel loop bounds set to comprise the only IP
!--------------------------------------------------------------------------------------------------
! geometry information required by the nonlocal CP model
call geometry_plastic_nonlocal_setIPvolume(reshape([(product(mySize/real(myGrid,pReal)),j=1,product(myGrid))], &
[1,product(myGrid)]))
call geometry_plastic_nonlocal_setIParea (cellEdgeArea(mySize,myGrid))
call geometry_plastic_nonlocal_setIPareaNormal (cellEdgeNormal(product(myGrid)))
call geometry_plastic_nonlocal_setIPneighborhood(IPneighborhood(myGrid))
!--------------------------------------------------------------------------------------------------
! sanity checks for debugging
if (debug_e < 1 .or. debug_e > product(myGrid)) call IO_error(602,ext_msg='element') ! selected element does not exist
if (debug_i /= 1) call IO_error(602,ext_msg='IP') ! selected IP does not exist
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
!> @brief Parses geometry file
!> @details important variables have an implicit "save" attribute. Therefore, this function is
! supposed to be called only once!
!--------------------------------------------------------------------------------------------------
subroutine readGeom(grid,geomSize,microstructure,homogenization)
integer, dimension(3), intent(out) :: grid ! grid (for all processes!)
real(pReal), dimension(3), intent(out) :: geomSize ! size (for all processes!)
integer, dimension(:), intent(out), allocatable :: &
microstructure, &
homogenization
character(len=:), allocatable :: rawData
character(len=65536) :: line
integer, allocatable, dimension(:) :: chunkPos
integer :: &
h =- 1, &
headerLength = -1, & !< length of header (in lines)
fileLength, & !< length of the geom file (in characters)
fileUnit, &
startPos, endPos, &
myStat, &
l, & !< line counter
c, & !< counter for # microstructures in line
o, & !< order of "to" packing
e, & !< "element", i.e. spectral collocation point
i, j
grid = -1
geomSize = -1.0_pReal
!--------------------------------------------------------------------------------------------------
! read raw data as stream
inquire(file = trim(geometryFile), size=fileLength)
open(newunit=fileUnit, file=trim(geometryFile), access='stream',&
status='old', position='rewind', action='read',iostat=myStat)
if(myStat /= 0) call IO_error(100,ext_msg=trim(geometryFile))
allocate(character(len=fileLength)::rawData)
read(fileUnit) rawData
close(fileUnit)
!--------------------------------------------------------------------------------------------------
! get header length
endPos = index(rawData,new_line(''))
if(endPos <= index(rawData,'head')) then
startPos = len(rawData)
call IO_error(error_ID=841, ext_msg='readGeom')
else
chunkPos = IO_stringPos(rawData(1:endPos))
if (chunkPos(1) < 2) call IO_error(error_ID=841, ext_msg='readGeom')
headerLength = IO_intValue(rawData(1:endPos),chunkPos,1)
startPos = endPos + 1
endif
!--------------------------------------------------------------------------------------------------
! read and interprete header
l = 0
do while (l < headerLength .and. startPos < len(rawData))
endPos = startPos + index(rawData(startPos:),new_line('')) - 1
if (endPos < startPos) endPos = len(rawData) ! end of file without new line
line = rawData(startPos:endPos)
startPos = endPos + 1
l = l + 1
chunkPos = IO_stringPos(trim(line))
if (chunkPos(1) < 2) cycle ! need at least one keyword value pair
select case ( IO_lc(IO_StringValue(trim(line),chunkPos,1,.true.)) )
case ('grid')
if (chunkPos(1) > 6) then
do j = 2,6,2
select case (IO_lc(IO_stringValue(line,chunkPos,j)))
case('a')
grid(1) = IO_intValue(line,chunkPos,j+1)
case('b')
grid(2) = IO_intValue(line,chunkPos,j+1)
case('c')
grid(3) = IO_intValue(line,chunkPos,j+1)
end select
enddo
endif
case ('size')
if (chunkPos(1) > 6) then
do j = 2,6,2
select case (IO_lc(IO_stringValue(line,chunkPos,j)))
case('x')
geomSize(1) = IO_floatValue(line,chunkPos,j+1)
case('y')
geomSize(2) = IO_floatValue(line,chunkPos,j+1)
case('z')
geomSize(3) = IO_floatValue(line,chunkPos,j+1)
end select
enddo
endif
case ('homogenization')
if (chunkPos(1) > 1) h = IO_intValue(line,chunkPos,2)
end select
enddo
!--------------------------------------------------------------------------------------------------
! sanity checks
if(h < 1) &
call IO_error(error_ID = 842, ext_msg='homogenization (readGeom)')
if(any(grid < 1)) &
call IO_error(error_ID = 842, ext_msg='grid (readGeom)')
if(any(geomSize < 0.0_pReal)) &
call IO_error(error_ID = 842, ext_msg='size (readGeom)')
allocate(microstructure(product(grid)), source = -1) ! too large in case of MPI (shrink later, not very elegant)
allocate(homogenization(product(grid)), source = h) ! too large in case of MPI (shrink later, not very elegant)
!--------------------------------------------------------------------------------------------------
! read and interpret content
e = 1
do while (startPos < len(rawData))
endPos = startPos + index(rawData(startPos:),new_line('')) - 1
if (endPos < startPos) endPos = len(rawData) ! end of file without new line
line = rawData(startPos:endPos)
startPos = endPos + 1
l = l + 1
chunkPos = IO_stringPos(trim(line))
noCompression: if (chunkPos(1) /= 3) then
c = chunkPos(1)
microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)]
else noCompression
compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then
c = IO_intValue(line,chunkPos,1)
microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,3),i = 1,IO_intValue(line,chunkPos,1))]
else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression
c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1
o = merge(+1, -1, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1))
microstructure(e:e+c-1) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)]
else compression
c = chunkPos(1)
microstructure(e:e+c-1) = [(IO_intValue(line,chunkPos,i+1), i=0, c-1)]
endif compression
endif noCompression
e = e+c
end do
if (e-1 /= product(grid)) call IO_error(error_ID = 843, el=e)
end subroutine readGeom
!---------------------------------------------------------------------------------------------------
!> @brief Calculate position of IPs/cell centres (pretend to be an element)
!---------------------------------------------------------------------------------------------------
function IPcoordinates(grid,geomSize,grid3Offset)
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, intent(in) :: grid3Offset ! grid(3) offset
real(pReal), dimension(3,1,product(grid)) :: ipCoordinates
integer :: &
a,b,c, &
i
i = 0
do c = 1, grid(3); do b = 1, grid(2); do a = 1, grid(1)
i = i + 1
IPcoordinates(1:3,1,i) = geomSize/real(grid,pReal) * (real([a,b,grid3Offset+c],pReal) -0.5_pReal)
enddo; enddo; enddo
end function IPcoordinates
!---------------------------------------------------------------------------------------------------
!> @brief Calculate position of nodes (pretend to be an element)
!---------------------------------------------------------------------------------------------------
pure function nodes(grid,geomSize,grid3Offset)
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, intent(in) :: grid3Offset ! grid(3) offset
real(pReal), dimension(3,product(grid+1)) :: nodes
integer :: &
a,b,c, &
n
n = 0
do c = 0, grid3; do b = 0, grid(2); do a = 0, grid(1)
n = n + 1
nodes(1:3,n) = geomSize/real(grid,pReal) * real([a,b,grid3Offset+c],pReal)
enddo; enddo; enddo
end function nodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculate IP interface areas
!--------------------------------------------------------------------------------------------------
pure function cellEdgeArea(geomSize,grid)
real(pReal), dimension(3), intent(in) :: geomSize ! size (for this process!)
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
real(pReal), dimension(6,1,product(grid)) :: cellEdgeArea
cellEdgeArea(1:2,1,:) = geomSize(2)/real(grid(2)) * geomSize(3)/real(grid(3))
cellEdgeArea(3:4,1,:) = geomSize(3)/real(grid(3)) * geomSize(1)/real(grid(1))
cellEdgeArea(5:6,1,:) = geomSize(1)/real(grid(1)) * geomSize(2)/real(grid(2))
end function cellEdgeArea
!--------------------------------------------------------------------------------------------------
!> @brief Calculate IP interface areas normals
!--------------------------------------------------------------------------------------------------
pure function cellEdgeNormal(nElems)
integer, intent(in) :: nElems
real, dimension(3,6,1,nElems) :: cellEdgeNormal
cellEdgeNormal(1:3,1,1,:) = spread([+1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems)
cellEdgeNormal(1:3,2,1,:) = spread([-1.0_pReal, 0.0_pReal, 0.0_pReal],2,nElems)
cellEdgeNormal(1:3,3,1,:) = spread([ 0.0_pReal,+1.0_pReal, 0.0_pReal],2,nElems)
cellEdgeNormal(1:3,4,1,:) = spread([ 0.0_pReal,-1.0_pReal, 0.0_pReal],2,nElems)
cellEdgeNormal(1:3,5,1,:) = spread([ 0.0_pReal, 0.0_pReal,+1.0_pReal],2,nElems)
cellEdgeNormal(1:3,6,1,:) = spread([ 0.0_pReal, 0.0_pReal,-1.0_pReal],2,nElems)
end function cellEdgeNormal
!--------------------------------------------------------------------------------------------------
!> @brief Build IP neighborhood relations
!--------------------------------------------------------------------------------------------------
pure function IPneighborhood(grid)
integer, dimension(3), intent(in) :: grid ! grid (for this process!)
integer, dimension(3,6,1,product(grid)) :: IPneighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
integer :: &
x,y,z, &
e
e = 0
do z = 0,grid(3)-1; do y = 0,grid(2)-1; do x = 0,grid(1)-1
e = e + 1
IPneighborhood(1,1,1,e) = z * grid(1) * grid(2) &
+ y * grid(1) &
+ modulo(x+1,grid(1)) &
+ 1
IPneighborhood(1,2,1,e) = z * grid(1) * grid(2) &
+ y * grid(1) &
+ modulo(x-1,grid(1)) &
+ 1
IPneighborhood(1,3,1,e) = z * grid(1) * grid(2) &
+ modulo(y+1,grid(2)) * grid(1) &
+ x &
+ 1
IPneighborhood(1,4,1,e) = z * grid(1) * grid(2) &
+ modulo(y-1,grid(2)) * grid(1) &
+ x &
+ 1
IPneighborhood(1,5,1,e) = modulo(z+1,grid(3)) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1
IPneighborhood(1,6,1,e) = modulo(z-1,grid(3)) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1
IPneighborhood(2,1:6,1,e) = 1
IPneighborhood(3,1,1,e) = 2
IPneighborhood(3,2,1,e) = 1
IPneighborhood(3,3,1,e) = 4
IPneighborhood(3,4,1,e) = 3
IPneighborhood(3,5,1,e) = 6
IPneighborhood(3,6,1,e) = 5
enddo; enddo; enddo
end function IPneighborhood
!!--------------------------------------------------------------------------------------------------
!!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
!!--------------------------------------------------------------------------------------------------
!function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
!
! real(pReal), intent(in), dimension(:,:,:,:) :: &
! centres
! real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: &
! nodes
! real(pReal), intent(in), dimension(3) :: &
! gDim
! real(pReal), intent(in), dimension(3,3) :: &
! Favg
! real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: &
! wrappedCentres
!
! integer :: &
! i,j,k,n
! integer, dimension(3), parameter :: &
! diag = 1
! integer, dimension(3) :: &
! shift = 0, &
! lookup = 0, &
! me = 0, &
! iRes = 0
! integer, dimension(3,8) :: &
! neighbor = reshape([ &
! 0, 0, 0, &
! 1, 0, 0, &
! 1, 1, 0, &
! 0, 1, 0, &
! 0, 0, 1, &
! 1, 0, 1, &
! 1, 1, 1, &
! 0, 1, 1 ], [3,8])
!
!!--------------------------------------------------------------------------------------------------
!! initializing variables
! iRes = [size(centres,2),size(centres,3),size(centres,4)]
! nodes = 0.0_pReal
! wrappedCentres = 0.0_pReal
!
!!--------------------------------------------------------------------------------------------------
!! building wrappedCentres = centroids + ghosts
! wrappedCentres(1:3,2:iRes(1)+1,2:iRes(2)+1,2:iRes(3)+1) = centres
! do k = 0,iRes(3)+1
! do j = 0,iRes(2)+1
! do i = 0,iRes(1)+1
! if (k==0 .or. k==iRes(3)+1 .or. & ! z skin
! j==0 .or. j==iRes(2)+1 .or. & ! y skin
! i==0 .or. i==iRes(1)+1 ) then ! x skin
! me = [i,j,k] ! me on skin
! shift = sign(abs(iRes+diag-2*me)/(iRes+diag),iRes+diag-2*me)
! lookup = me-diag+shift*iRes
! wrappedCentres(1:3,i+1, j+1, k+1) = &
! centres(1:3,lookup(1)+1,lookup(2)+1,lookup(3)+1) &
! - matmul(Favg, real(shift,pReal)*gDim)
! endif
! enddo; enddo; enddo
!
!!--------------------------------------------------------------------------------------------------
!! averaging
! do k = 0,iRes(3); do j = 0,iRes(2); do i = 0,iRes(1)
! do n = 1,8
! nodes(1:3,i+1,j+1,k+1) = &
! nodes(1:3,i+1,j+1,k+1) + wrappedCentres(1:3,i+1+neighbor(1,n), &
! j+1+neighbor(2,n), &
! k+1+neighbor(3,n) )
! enddo
! enddo; enddo; enddo
! nodes = nodes/8.0_pReal
!
!end function mesh_nodesAroundCentres
end module mesh