DAMASK_EICMD/src/CPFEM.f90

637 lines
27 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief CPFEM engine
!--------------------------------------------------------------------------------------------------
module CPFEM
use prec, only: &
pReal, &
pInt
implicit none
private
real(pReal), parameter, private :: &
CPFEM_odd_stress = 1e15_pReal, & !< return value for stress in case of ping pong dummy cycle
CPFEM_odd_jacobian = 1e50_pReal !< return value for jacobian in case of ping pong dummy cycle
real(pReal), dimension (:,:,:), allocatable, private :: &
CPFEM_cs !< Cauchy stress
real(pReal), dimension (:,:,:,:), allocatable, private :: &
CPFEM_dcsdE !< Cauchy stress tangent
real(pReal), dimension (:,:,:,:), allocatable, private :: &
CPFEM_dcsdE_knownGood !< known good tangent
integer(pInt), public :: &
cycleCounter = 0_pInt, & !< needs description
theInc = -1_pInt, & !< needs description
lastLovl = 0_pInt, & !< lovl in previous call to marc hypela2
lastStep = 0_pInt !< kstep in previous call to abaqus umat
real(pReal), public :: &
theTime = 0.0_pReal, & !< needs description
theDelta = 0.0_pReal
logical, public :: &
outdatedFFN1 = .false., & !< needs description
lastIncConverged = .false., & !< needs description
outdatedByNewInc = .false. !< needs description
logical, public, protected :: &
CPFEM_init_done = .false. !< remember whether init has been done already
logical, private :: &
CPFEM_calc_done = .false. !< remember whether first ip has already calced the results
integer(pInt), parameter, public :: &
CPFEM_COLLECT = 2_pInt**0_pInt, &
CPFEM_CALCRESULTS = 2_pInt**1_pInt, &
CPFEM_AGERESULTS = 2_pInt**2_pInt, &
CPFEM_BACKUPJACOBIAN = 2_pInt**3_pInt, &
CPFEM_RESTOREJACOBIAN = 2_pInt**4_pInt
public :: &
CPFEM_general, &
CPFEM_initAll
contains
!--------------------------------------------------------------------------------------------------
!> @brief call (thread safe) all module initializations
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_initAll(el,ip)
use prec, only: &
prec_init
use numerics, only: &
numerics_init
use debug, only: &
debug_init
use config, only: &
config_init
use FEsolving, only: &
FE_init
use math, only: &
math_init
use mesh, only: &
mesh_init
use material, only: &
material_init
#ifdef DAMASK_HDF5
use HDF5_utilities, only: &
HDF5_utilities_init
use results, only: &
results_init
#endif
use lattice, only: &
lattice_init
use constitutive, only: &
constitutive_init
use crystallite, only: &
crystallite_init
use homogenization, only: &
homogenization_init
use IO, only: &
IO_init
use DAMASK_interface
implicit none
integer(pInt), intent(in) :: el, & !< FE el number
ip !< FE integration point number
!$OMP CRITICAL (init)
if (.not. CPFEM_init_done) then
call DAMASK_interface_init ! Spectral and FEM interface to commandline
call prec_init
call IO_init
call numerics_init
call debug_init
call config_init
call math_init
call FE_init
call mesh_init(ip, el)
call lattice_init
#ifdef DAMASK_HDF5
call HDF5_utilities_init
call results_init
#endif
call material_init
call constitutive_init
call crystallite_init
call homogenization_init
call CPFEM_init
CPFEM_init_done = .true.
endif
!$OMP END CRITICAL (init)
end subroutine CPFEM_initAll
!--------------------------------------------------------------------------------------------------
!> @brief allocate the arrays defined in module CPFEM and initialize them
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_init
use IO, only: &
IO_error
use debug, only: &
debug_level, &
debug_CPFEM, &
debug_levelBasic, &
debug_levelExtensive
use FEsolving, only: &
symmetricSolver, &
restartRead, &
modelName
use mesh, only: &
theMesh
use material, only: &
material_phase, &
homogState, &
phase_plasticity, &
plasticState
use config, only: &
material_Nhomogenization
use crystallite, only: &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Lp0, &
crystallite_Fi0, &
crystallite_Li0, &
crystallite_S0
implicit none
integer :: k,l,m,ph,homog
write(6,'(/,a)') ' <<<+- CPFEM init -+>>>'
flush(6)
allocate(CPFEM_cs( 6,theMesh%elem%nIPs,theMesh%Nelems), source= 0.0_pReal)
allocate(CPFEM_dcsdE( 6,6,theMesh%elem%nIPs,theMesh%Nelems), source= 0.0_pReal)
allocate(CPFEM_dcsdE_knownGood(6,6,theMesh%elem%nIPs,theMesh%Nelems), source= 0.0_pReal)
! *** restore the last converged values of each essential variable from the binary file
!if (restartRead) then
! if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then
! write(6,'(a)') '<< CPFEM >> restored state variables of last converged step from binary files'
! flush(6)
! endif
! call IO_read_intFile(777,'recordedPhase'//trim(rankStr),modelName,size(material_phase))
! read (777,rec=1) material_phase
! close (777)
! call IO_read_realFile(777,'convergedF'//trim(rankStr),modelName,size(crystallite_F0))
! read (777,rec=1) crystallite_F0
! close (777)
! call IO_read_realFile(777,'convergedFp'//trim(rankStr),modelName,size(crystallite_Fp0))
! read (777,rec=1) crystallite_Fp0
! close (777)
! call IO_read_realFile(777,'convergedFi'//trim(rankStr),modelName,size(crystallite_Fi0))
! read (777,rec=1) crystallite_Fi0
! close (777)
! call IO_read_realFile(777,'convergedLp'//trim(rankStr),modelName,size(crystallite_Lp0))
! read (777,rec=1) crystallite_Lp0
! close (777)
! call IO_read_realFile(777,'convergedLi'//trim(rankStr),modelName,size(crystallite_Li0))
! read (777,rec=1) crystallite_Li0
! close (777)
! call IO_read_realFile(777,'convergedTstar'//trim(rankStr),modelName,size(crystallite_Tstar0_v))
! read (777,rec=1) crystallite_Tstar0_v
! close (777)
! call IO_read_realFile(777,'convergedStateConst'//trim(rankStr),modelName)
! m = 0_pInt
! readPlasticityInstances: do ph = 1_pInt, size(phase_plasticity)
! do k = 1_pInt, plasticState(ph)%sizeState
! do l = 1, size(plasticState(ph)%state0(1,:))
! m = m+1_pInt
! read(777,rec=m) plasticState(ph)%state0(k,l)
! enddo; enddo
! enddo readPlasticityInstances
! close (777)
! call IO_read_realFile(777,'convergedStateHomog'//trim(rankStr),modelName)
! m = 0_pInt
! readHomogInstances: do homog = 1_pInt, material_Nhomogenization
! do k = 1_pInt, homogState(homog)%sizeState
! do l = 1, size(homogState(homog)%state0(1,:))
! m = m+1_pInt
! read(777,rec=m) homogState(homog)%state0(k,l)
! enddo; enddo
! enddo readHomogInstances
! close (777)
! call IO_read_realFile(777,'convergeddcsdE',modelName,size(CPFEM_dcsdE))
! read (777,rec=1) CPFEM_dcsdE
! close (777)
! restartRead = .false.
!endif
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0) then
write(6,'(a32,1x,6(i8,1x))') 'CPFEM_cs: ', shape(CPFEM_cs)
write(6,'(a32,1x,6(i8,1x))') 'CPFEM_dcsdE: ', shape(CPFEM_dcsdE)
write(6,'(a32,1x,6(i8,1x),/)') 'CPFEM_dcsdE_knownGood: ', shape(CPFEM_dcsdE_knownGood)
write(6,'(a32,l1)') 'symmetricSolver: ', symmetricSolver
flush(6)
endif
end subroutine CPFEM_init
!--------------------------------------------------------------------------------------------------
!> @brief perform initialization at first call, update variables and call the actual material model
!--------------------------------------------------------------------------------------------------
subroutine CPFEM_general(mode, parallelExecution, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyStress, jacobian)
use numerics, only: &
defgradTolerance, &
iJacoStiffness
use debug, only: &
debug_level, &
debug_CPFEM, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_stressMaxLocation, &
debug_stressMinLocation, &
debug_jacobianMaxLocation, &
debug_jacobianMinLocation, &
debug_stressMax, &
debug_stressMin, &
debug_jacobianMax, &
debug_jacobianMin, &
debug_e, &
debug_i
use FEsolving, only: &
terminallyIll, &
FEsolving_execElem, &
FEsolving_execIP, &
restartWrite
use math, only: &
math_identity2nd, &
math_det33, &
math_delta, &
math_sym3333to66, &
math_66toSym3333, &
math_sym33to6, &
math_6toSym33
use mesh, only: &
mesh_FEasCP, &
theMesh, &
mesh_element
use material, only: &
microstructure_elemhomo, &
plasticState, &
sourceState, &
homogState, &
thermalState, &
damageState, &
phaseAt, phasememberAt, &
material_phase, &
phase_plasticity, &
temperature, &
thermalMapping, &
thermal_type, &
THERMAL_conduction_ID, &
phase_Nsources, &
material_homogenizationAt
use config, only: &
material_Nhomogenization
use crystallite, only: &
crystallite_partionedF,&
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Fi0, &
crystallite_Fi, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Li0, &
crystallite_Li, &
crystallite_dPdF, &
crystallite_S0, &
crystallite_S
use homogenization, only: &
materialpoint_F, &
materialpoint_F0, &
materialpoint_P, &
materialpoint_dPdF, &
materialpoint_results, &
materialpoint_sizeResults, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults
use IO, only: &
IO_warning
use DAMASK_interface
implicit none
integer(pInt), intent(in) :: elFE, & !< FE element number
ip !< integration point number
real(pReal), intent(in) :: dt !< time increment
real(pReal), dimension (3,3), intent(in) :: ffn, & !< deformation gradient for t=t0
ffn1 !< deformation gradient for t=t1
integer(pInt), intent(in) :: mode !< computation mode 1: regular computation plus aging of results
real(pReal), intent(in) :: temperature_inp !< temperature
logical, intent(in) :: parallelExecution !< flag indicating parallel computation of requested IPs
real(pReal), dimension(6), intent(out) :: cauchyStress !< stress as 6 vector
real(pReal), dimension(6,6), intent(out) :: jacobian !< jacobian as 66 tensor (Consistent tangent dcs/dE)
real(pReal) J_inverse, & ! inverse of Jacobian
rnd
real(pReal), dimension (3,3) :: Kirchhoff, & ! Piola-Kirchhoff stress in Matrix notation
cauchyStress33 ! stress vector in Matrix notation
real(pReal), dimension (3,3,3,3) :: H_sym, &
H, &
jacobian3333 ! jacobian in Matrix notation
integer(pInt) elCP, & ! crystal plasticity element number
i, j, k, l, m, n, ph, homog, mySource
logical updateJaco ! flag indicating if JAcobian has to be updated
elCP = mesh_FEasCP('elem',elFE)
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt &
.and. elCP == debug_e .and. ip == debug_i) then
write(6,'(/,a)') '#############################################'
write(6,'(a1,a22,1x,i8,a13)') '#','element', elCP, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','ip', ip, '#'
write(6,'(a1,a22,1x,f15.7,a6)') '#','theTime', theTime, '#'
write(6,'(a1,a22,1x,f15.7,a6)') '#','theDelta', theDelta, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','theInc', theInc, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','cycleCounter', cycleCounter, '#'
write(6,'(a1,a22,1x,i8,a13)') '#','computationMode',mode, '#'
if (terminallyIll) &
write(6,'(a,/)') '# --- terminallyIll --- #'
write(6,'(a,/)') '#############################################'; flush (6)
endif
if (iand(mode, CPFEM_BACKUPJACOBIAN) /= 0_pInt) &
CPFEM_dcsde_knownGood = CPFEM_dcsde
if (iand(mode, CPFEM_RESTOREJACOBIAN) /= 0_pInt) &
CPFEM_dcsde = CPFEM_dcsde_knownGood
!*** age results and write restart data if requested
if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) then
crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...)
crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation
crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity
crystallite_Fi0 = crystallite_Fi ! crystallite intermediate deformation
crystallite_Li0 = crystallite_Li ! crystallite intermediate velocity
crystallite_S0 = crystallite_S ! crystallite 2nd Piola Kirchhoff stress
forall ( i = 1:size(plasticState )) plasticState(i)%state0 = plasticState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
do i = 1, size(sourceState)
do mySource = 1,phase_Nsources(i)
sourceState(i)%p(mySource)%state0 = sourceState(i)%p(mySource)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array
enddo; enddo
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then
write(6,'(a)') '<< CPFEM >> aging states'
if (debug_e <= theMesh%Nelems .and. debug_i <= theMesh%elem%nIPs) then
write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') &
'<< CPFEM >> aged state of elFE ip grain',debug_e, debug_i, 1, &
plasticState(phaseAt(1,debug_i,debug_e))%state(:,phasememberAt(1,debug_i,debug_e))
endif
endif
do homog = 1_pInt, material_Nhomogenization
homogState (homog)%state0 = homogState (homog)%state
thermalState (homog)%state0 = thermalState (homog)%state
damageState (homog)%state0 = damageState (homog)%state
enddo
! * dump the last converged values of each essential variable to a binary file
!if (restartWrite) then
! if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) &
! write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files'
!
! call IO_write_jobRealFile(777,'recordedPhase'//trim(rankStr),size(material_phase))
! write (777,rec=1) material_phase
! close (777)
! call IO_write_jobRealFile(777,'convergedF'//trim(rankStr),size(crystallite_F0))
! write (777,rec=1) crystallite_F0
! close (777)
! call IO_write_jobRealFile(777,'convergedFp'//trim(rankStr),size(crystallite_Fp0))
! write (777,rec=1) crystallite_Fp0
! close (777)
! call IO_write_jobRealFile(777,'convergedFi'//trim(rankStr),size(crystallite_Fi0))
! write (777,rec=1) crystallite_Fi0
! close (777)
! call IO_write_jobRealFile(777,'convergedLp'//trim(rankStr),size(crystallite_Lp0))
! write (777,rec=1) crystallite_Lp0
! close (777)
! call IO_write_jobRealFile(777,'convergedLi'//trim(rankStr),size(crystallite_Li0))
! write (777,rec=1) crystallite_Li0
! close (777)
! call IO_write_jobRealFile(777,'convergedTstar'//trim(rankStr),size(crystallite_Tstar0_v))
! write (777,rec=1) crystallite_Tstar0_v
! close (777)
! call IO_write_jobRealFile(777,'convergedStateConst'//trim(rankStr))
! m = 0_pInt
! writePlasticityInstances: do ph = 1_pInt, size(phase_plasticity)
! do k = 1_pInt, plasticState(ph)%sizeState
! do l = 1, size(plasticState(ph)%state0(1,:))
! m = m+1_pInt
! write(777,rec=m) plasticState(ph)%state0(k,l)
! enddo; enddo
! enddo writePlasticityInstances
! close (777)
! call IO_write_jobRealFile(777,'convergedStateHomog'//trim(rankStr))
! m = 0_pInt
! writeHomogInstances: do homog = 1_pInt, material_Nhomogenization
! do k = 1_pInt, homogState(homog)%sizeState
! do l = 1, size(homogState(homog)%state0(1,:))
! m = m+1_pInt
! write(777,rec=m) homogState(homog)%state0(k,l)
! enddo; enddo
! enddo writeHomogInstances
! close (777)
! call IO_write_jobRealFile(777,'convergeddcsdE',size(CPFEM_dcsdE))
! write (777,rec=1) CPFEM_dcsdE
! close (777)
!endif
endif
!*** collection of FEM input with returning of randomize odd stress and jacobian
!* If no parallel execution is required, there is no need to collect FEM input
if (.not. parallelExecution) then
chosenThermal1: select case (thermal_type(mesh_element(3,elCP)))
case (THERMAL_conduction_ID) chosenThermal1
temperature(material_homogenizationAt(elCP))%p(thermalMapping(material_homogenizationAt(elCP))%p(ip,elCP)) = &
temperature_inp
end select chosenThermal1
materialpoint_F0(1:3,1:3,ip,elCP) = ffn
materialpoint_F(1:3,1:3,ip,elCP) = ffn1
elseif (iand(mode, CPFEM_COLLECT) /= 0_pInt) then
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6)
chosenThermal2: select case (thermal_type(mesh_element(3,elCP)))
case (THERMAL_conduction_ID) chosenThermal2
temperature(material_homogenizationAt(elCP))%p(thermalMapping(material_homogenizationAt(elCP))%p(ip,elCP)) = &
temperature_inp
end select chosenThermal2
materialpoint_F0(1:3,1:3,ip,elCP) = ffn
materialpoint_F(1:3,1:3,ip,elCP) = ffn1
CPFEM_calc_done = .false.
endif ! collection
!*** calculation of stress and jacobian
if (iand(mode, CPFEM_CALCRESULTS) /= 0_pInt) then
!*** deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one
validCalculation: if (terminallyIll &
.or. outdatedFFN1 &
.or. any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then
if (any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then
if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then
write(6,'(a,1x,i8,1x,i2)') '<< CPFEM >> OUTDATED at elFE ip',elFE,ip
write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 old:',&
transpose(materialpoint_F(1:3,1:3,ip,elCP))
write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 now:',transpose(ffn1)
endif
outdatedFFN1 = .true.
endif
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd*CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian*math_identity2nd(6)
!*** deformation gradient is not outdated
else validCalculation
updateJaco = mod(cycleCounter,iJacoStiffness) == 0
!* no parallel computation, so we use just one single elFE and ip for computation
if (.not. parallelExecution) then
FEsolving_execElem(1) = elCP
FEsolving_execElem(2) = elCP
if (.not. microstructure_elemhomo(mesh_element(4,elCP)) .or. & ! calculate unless homogeneous
(microstructure_elemhomo(mesh_element(4,elCP)) .and. ip == 1_pInt)) then ! and then only first ip
FEsolving_execIP(1,elCP) = ip
FEsolving_execIP(2,elCP) = ip
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,1x,i2)') '<< CPFEM >> calculation for elFE ip ',elFE,ip
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent
call materialpoint_postResults()
endif
!* parallel computation and calulation not yet done
elseif (.not. CPFEM_calc_done) then
if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a,i8)') '<< CPFEM >> calculation for elements ',FEsolving_execElem(1),&
' to ',FEsolving_execElem(2)
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside)
call materialpoint_postResults()
CPFEM_calc_done = .true.
endif
!* map stress and stiffness (or return odd values if terminally ill)
terminalIllness: if ( terminallyIll ) then
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal
CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress
CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6)
else terminalIllness
if (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip > 1_pInt) then ! me homogenous? --> copy from first ip
materialpoint_P(1:3,1:3,ip,elCP) = materialpoint_P(1:3,1:3,1,elCP)
materialpoint_F(1:3,1:3,ip,elCP) = materialpoint_F(1:3,1:3,1,elCP)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,elCP) = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,elCP)
materialpoint_results(1:materialpoint_sizeResults,ip,elCP) = &
materialpoint_results(1:materialpoint_sizeResults,1,elCP)
endif
! translate from P to CS
Kirchhoff = matmul(materialpoint_P(1:3,1:3,ip,elCP), transpose(materialpoint_F(1:3,1:3,ip,elCP)))
J_inverse = 1.0_pReal / math_det33(materialpoint_F(1:3,1:3,ip,elCP))
CPFEM_cs(1:6,ip,elCP) = math_sym33to6(J_inverse * Kirchhoff,weighted=.false.)
! translate from dP/dF to dCS/dE
H = 0.0_pReal
do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3
H(i,j,k,l) = H(i,j,k,l) &
+ materialpoint_F(j,m,ip,elCP) * materialpoint_F(l,n,ip,elCP) &
* materialpoint_dPdF(i,m,k,n,ip,elCP) &
- math_delta(j,l) * materialpoint_F(i,m,ip,elCP) * materialpoint_P(k,m,ip,elCP) &
+ 0.5_pReal * ( Kirchhoff(j,l)*math_delta(i,k) + Kirchhoff(i,k)*math_delta(j,l) &
+ Kirchhoff(j,k)*math_delta(i,l) + Kirchhoff(i,l)*math_delta(j,k))
enddo; enddo; enddo; enddo; enddo; enddo
forall(i=1:3, j=1:3,k=1:3,l=1:3) &
H_sym(i,j,k,l) = 0.25_pReal * (H(i,j,k,l) + H(j,i,k,l) + H(i,j,l,k) + H(j,i,l,k))
CPFEM_dcsde(1:6,1:6,ip,elCP) = math_sym3333to66(J_inverse * H_sym,weighted=.false.)
endif terminalIllness
endif validCalculation
!* report stress and stiffness
if ((iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) &
.and. ((debug_e == elCP .and. debug_i == ip) &
.or. .not. iand(debug_level(debug_CPFEM), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,/,12x,6(f10.3,1x)/)') &
'<< CPFEM >> stress/MPa at elFE ip ', elFE, ip, CPFEM_cs(1:6,ip,elCP)*1.0e-6_pReal
write(6,'(a,i8,1x,i2,/,6(12x,6(f10.3,1x)/))') &
'<< CPFEM >> Jacobian/GPa at elFE ip ', elFE, ip, transpose(CPFEM_dcsdE(1:6,1:6,ip,elCP))*1.0e-9_pReal
flush(6)
endif
endif
!*** warn if stiffness close to zero
if (all(abs(CPFEM_dcsdE(1:6,1:6,ip,elCP)) < 1e-10_pReal)) call IO_warning(601,elCP,ip)
!*** copy to output if using commercial FEM solver
cauchyStress = CPFEM_cs (1:6, ip,elCP)
jacobian = CPFEM_dcsdE(1:6,1:6,ip,elCP)
!*** remember extreme values of stress ...
cauchyStress33 = math_6toSym33(CPFEM_cs(1:6,ip,elCP),weighted=.false.)
if (maxval(cauchyStress33) > debug_stressMax) then
debug_stressMaxLocation = [elCP, ip]
debug_stressMax = maxval(cauchyStress33)
endif
if (minval(cauchyStress33) < debug_stressMin) then
debug_stressMinLocation = [elCP, ip]
debug_stressMin = minval(cauchyStress33)
endif
!*** ... and Jacobian
jacobian3333 = math_66toSym3333(CPFEM_dcsdE(1:6,1:6,ip,elCP),weighted=.false.)
if (maxval(jacobian3333) > debug_jacobianMax) then
debug_jacobianMaxLocation = [elCP, ip]
debug_jacobianMax = maxval(jacobian3333)
endif
if (minval(jacobian3333) < debug_jacobianMin) then
debug_jacobianMinLocation = [elCP, ip]
debug_jacobianMin = minval(jacobian3333)
endif
end subroutine CPFEM_general
end module CPFEM