DAMASK_EICMD/code/CPFEM.f90

393 lines
21 KiB
Fortran

!* $Id$
!##############################################################
MODULE CPFEM
!##############################################################
! *** CPFEM engine ***
!
use prec, only: pReal, &
pInt
implicit none
real(pReal), parameter :: CPFEM_odd_stress = 1e15_pReal, &
CPFEM_odd_jacobian = 1e50_pReal
real(pReal), dimension (:,:,:), allocatable :: CPFEM_cs ! Cauchy stress
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_dcsdE ! Cauchy stress tangent
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_dcsdE_knownGood ! known good tangent
logical :: CPFEM_init_done = .false., & ! remember whether init has been done already
CPFEM_init_inProgress = .false., & ! remember whether first IP is currently performing init
CPFEM_calc_done = .false. ! remember whether first IP has already calced the results
CONTAINS
!*********************************************************
!*** allocate the arrays defined in module CPFEM ***
!*** and initialize them ***
!*********************************************************
subroutine CPFEM_init()
use prec, only: pInt
use FEsolving, only: parallelExecution, &
symmetricSolver
use mesh, only: mesh_NcpElems, &
mesh_maxNips
implicit none
! initialize stress and jacobian to zero
allocate(CPFEM_cs(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_cs = 0.0_pReal
allocate(CPFEM_dcsdE(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE = 0.0_pReal
allocate(CPFEM_dcsdE_knownGood(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE_knownGood = 0.0_pReal
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- cpfem init -+>>>'
write(6,*) '$Id$'
write(6,*)
write(6,'(a32,x,6(i5,x))') 'CPFEM_cs: ', shape(CPFEM_cs)
write(6,'(a32,x,6(i5,x))') 'CPFEM_dcsdE: ', shape(CPFEM_dcsdE)
write(6,'(a32,x,6(i5,x))') 'CPFEM_dcsdE_knownGood: ', shape(CPFEM_dcsdE_knownGood)
write(6,*)
write(6,*) 'parallelExecution: ', parallelExecution
write(6,*) 'symmetricSolver: ', symmetricSolver
call flush(6)
!$OMP END CRITICAL (write2out)
return
endsubroutine
!***********************************************************************
!*** perform initialization at first call, update variables and ***
!*** call the actual material model ***
!***********************************************************************
subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchyStress,&
& jacobian, pstress, dPdF)
! note: cauchyStress = Cauchy stress cs(6) and jacobian = Consistent tangent dcs/dE
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
prec_init
use numerics, only: numerics_init, &
relevantStrain, &
defgradTolerance, &
iJacoStiffness
use debug, only: debug_init, &
debug_g, &
debug_i, &
debug_e, &
debugger, &
selectiveDebugger, &
verboseDebugger
use FEsolving, only: FE_init, &
parallelExecution, &
outdatedFFN1, &
terminallyIll, &
cycleCounter, &
theInc, &
theTime, &
theDelta, &
FEsolving_execElem, &
FEsolving_execIP
use math, only: math_init, &
math_identity2nd, &
math_mul33x33, &
math_det3x3, &
math_I3, &
math_Mandel3333to66, &
math_Mandel33to6
use mesh, only: mesh_init, &
mesh_FEasCP, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
FE_Nips
use lattice, only: lattice_init
use material, only: material_init, &
homogenization_maxNgrains, &
microstructure_elemhomo
use constitutive, only: constitutive_init,&
constitutive_state0,constitutive_state
use crystallite, only: crystallite_init, &
crystallite_F0, &
crystallite_partionedF, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Lp0, &
crystallite_Lp, &
crystallite_Tstar0_v, &
crystallite_Tstar_v
use homogenization, only: homogenization_init, &
homogenization_sizeState, &
homogenization_state, &
homogenization_state0, &
materialpoint_F, &
materialpoint_F0, &
materialpoint_P, &
materialpoint_dPdF, &
materialpoint_results, &
materialpoint_Temperature, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults
use IO, only: IO_init
use mpie_interface
implicit none
!*** input variables ***!
integer(pInt), intent(in) :: element, & ! FE element number
IP ! FE integration point number
real(pReal), intent(inout) :: Temperature ! temperature
real(pReal), intent(in) :: dt ! time increment
real(pReal), dimension (3,3), intent(in) :: ffn, & ! deformation gradient for t=t0
ffn1 ! deformation gradient for t=t1
integer(pInt), intent(in) :: mode ! computation mode 1: regular computation plus aging of results
! 2: regular computation
! 3: collection of FEM data
! 4: backup tangent from former converged inc
! 5: restore tangent from former converged inc
! 6: recycling of former results (MARC speciality)
!*** output variables ***!
real(pReal), dimension(6), intent(out) :: cauchyStress ! stress vector in Mandel notation
real(pReal), dimension(6,6), intent(out) :: jacobian ! jacobian in Mandel notation
real(pReal), dimension (3,3), intent(out) :: pstress ! Piola-Kirchhoff stress in Matrix notation
real(pReal), dimension (3,3,3,3), intent(out) :: dPdF !
!*** local variables ***!
real(pReal) J_inverse, & ! inverse of Jacobian
rnd
real(pReal), dimension (3,3) :: Kirchhoff ! Piola-Kirchhoff stress in Matrix notation
real(pReal), dimension (3,3,3,3) :: H_sym, &
H
integer(pInt) cp_en, & ! crystal plasticity element number
i, &
j, &
k, &
l, &
m, &
n, &
e
logical updateJaco ! flag indicating if JAcobian has to be updated
!*** global variables ***!
! CPFEM_cs, &
! CPFEM_dcsdE, &
! CPFEM_dcsdE_knownGood, &
! CPFEM_init_done, &
! CPFEM_calc_done, &
! CPFEM_odd_stress, &
! CPFEM_odd_jacobian
! initialization step (three dimensional stress state check missing?)
if (.not. CPFEM_init_done) then
call random_number(rnd)
do i=1,int(256.0*rnd)
n = n+1_pInt ! wasting random amount of time...
enddo ! ...to break potential race in multithreading
n = n+1_pInt
if (.not. CPFEM_init_inProgress) then ! yes my thread won!
CPFEM_init_inProgress = .true.
call prec_init()
call IO_init()
call numerics_init()
call debug_init()
call math_init()
call FE_init()
call mesh_init(IP, element) ! pass on coordinates to alter calcMode of first ip
call lattice_init()
call material_init()
call constitutive_init()
call crystallite_init(Temperature) ! (have to) use temperature of first IP for whole model
call homogenization_init(Temperature)
call CPFEM_init()
call mpie_interface_init()
CPFEM_init_done = .true.
CPFEM_init_inProgress = .false.
else ! loser, loser...
do while (CPFEM_init_inProgress)
enddo
endif
endif
cp_en = mesh_FEasCP('elem',element)
selectiveDebugger = (cp_en == debug_e .and. IP == debug_i)
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*)
write(6,'(a)') '#######################################################'
write(6,'(a32,x,i5,x,i2)') 'reporting for element, ip:',cp_en,IP
write(6,'(a32,x,f15.7)') 'theTime',theTime
write(6,'(a32,x,f15.7)') 'theDelta',theDelta
write(6,'(a32,x,i8)') 'theInc',theInc
write(6,'(a32,x,i8)') 'cycleCounter',cycleCounter
write(6,'(a32,x,i8)') 'computationMode',mode
write(6,'(a)') '#######################################################'
call flush (6)
!$OMP END CRITICAL (write2out)
endif
! according to our "mode" we decide what to do
select case (mode)
! --+>> REGULAR COMPUTATION (WITH AGING OF RESULTS IF MODE == 1) <<+--
case (1,2,8,9)
! age results if mode == 1
if (mode == 1 .or. mode == 8) then
crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...)
crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation
crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity
crystallite_Tstar0_v = crystallite_Tstar_v ! crystallite 2nd Piola Kirchhoff stress
forall ( i = 1:homogenization_maxNgrains, &
j = 1:mesh_maxNips, &
k = 1:mesh_NcpElems ) &
constitutive_state0(i,j,k)%p = constitutive_state(i,j,k)%p ! microstructure of crystallites
if (selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a32,x,i8,x,i2,/,4(3(e20.8,x),/))') '°°° AGED state of grain 1, element ip',cp_en,IP, &
constitutive_state(1,IP,cp_en)%p
!$OMP END CRITICAL (write2out)
endif
do k = 1,mesh_NcpElems
do j = 1,mesh_maxNips
if (homogenization_sizeState(j,k) > 0_pInt) &
homogenization_state0(j,k)%p = homogenization_state(j,k)%p ! internal state of homogenization scheme
enddo
enddo
endif
if (mode == 8 .or. mode == 9) then ! Abaqus explicit skips collect
materialpoint_Temperature(IP,cp_en) = Temperature
materialpoint_F0(:,:,IP,cp_en) = ffn
materialpoint_F(:,:,IP,cp_en) = ffn1
endif
! deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one
if (terminallyIll .or. outdatedFFN1 .or. any(abs(ffn1 - materialpoint_F(:,:,IP,cp_en)) > defgradTolerance)) then
if (.not. terminallyIll .and. .not. outdatedFFN1) then
!$OMP CRITICAL (write2out)
write(6,'(a32,x,i5,x,i2)') '°°° OUTDATED at element ip',cp_en,IP
write(6,'(a32,/,3(3(f10.6,x),/))') ' FFN1 now:',ffn1(:,1),ffn1(:,2),ffn1(:,3)
!$OMP END CRITICAL (write2out)
outdatedFFN1 = .true.
endif
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = 1.0_pReal - rnd
CPFEM_cs(:,IP,cp_en) = rnd*CPFEM_odd_stress
CPFEM_dcsde(:,:,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(6)
! deformation gradient is not outdated
else
! set flag for Jacobian update
updateJaco = mod(cycleCounter,iJacoStiffness) == 0
! no parallel computation
if (.not. parallelExecution) then
! we just take one single element and IP
FEsolving_execElem(1) = cp_en
FEsolving_execElem(2) = cp_en
FEsolving_execIP(1,cp_en) = IP
FEsolving_execIP(2,cp_en) = IP
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent
call materialpoint_postResults(dt) ! post results
! parallel computation and calulation not yet done
elseif (.not. CPFEM_calc_done) then
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside)
call materialpoint_postResults(dt) ! post results
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! loop over all parallely processed elements
if (microstructure_elemhomo(mesh_element(4,e))) then ! dealing with homogeneous element?
forall (i = 2:FE_Nips(mesh_element(2,e))) ! copy results of first IP to all others
materialpoint_P(:,:,i,e) = materialpoint_P(:,:,1,e)
materialpoint_F(:,:,i,e) = materialpoint_F(:,:,1,e)
materialpoint_dPdF(:,:,:,:,i,e) = materialpoint_dPdF(:,:,:,:,1,e)
materialpoint_results(:,i,e) = materialpoint_results(:,1,e)
end forall
endif
enddo
CPFEM_calc_done = .true.
endif
if ( terminallyIll ) then
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = 1.0_pReal - rnd
CPFEM_cs(:,IP,cp_en) = rnd*CPFEM_odd_stress
CPFEM_dcsde(:,:,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(6)
else
! translate from P to CS
Kirchhoff = math_mul33x33(materialpoint_P(:,:,IP, cp_en),transpose(materialpoint_F(:,:,IP, cp_en)))
J_inverse = 1.0_pReal/math_det3x3(materialpoint_F(:,:,IP, cp_en))
CPFEM_cs(:,IP,cp_en) = math_Mandel33to6(J_inverse*Kirchhoff)
! translate from dP/dF to dCS/dE
H = 0.0_pReal
do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3
! forall(i=1:3,j=1:3,k=1:3,l=1:3,m=1:3,n=1:3) &
H(i,j,k,l) = H(i,j,k,l) + &
materialpoint_F(j,m,IP,cp_en) * &
materialpoint_F(l,n,IP,cp_en) * &
materialpoint_dPdF(i,m,k,n,IP,cp_en) - &
math_I3(j,l)*materialpoint_F(i,m,IP,cp_en)*materialpoint_P(k,m,IP,cp_en) + &
0.5_pReal*(math_I3(i,k)*Kirchhoff(j,l) + math_I3(j,l)*Kirchhoff(i,k) + &
math_I3(i,l)*Kirchhoff(j,k) + math_I3(j,k)*Kirchhoff(i,l))
enddo; enddo; enddo; enddo; enddo; enddo
! forall(i=1:3,j=1:3,k=1:3,l=1:3) &
! H_sym(i,j,k,l) = 0.25_pReal*(H(i,j,k,l)+H(j,i,k,l)+H(i,j,l,k)+H(j,i,l,k)) ! where to use this symmetric version ??
CPFEM_dcsde(:,:,IP,cp_en) = math_Mandel3333to66(J_inverse*H) ! should this use the symmetrized H ??
endif
endif
! --+>> COLLECTION OF FEM INPUT WITH RETURNING OF RANDOMIZED ODD STRESS AND JACOBIAN <<+--
case (3,4,5)
if (mode == 4) then
CPFEM_dcsde_knownGood = CPFEM_dcsde ! --+>> BACKUP JACOBIAN FROM FORMER CONVERGED INC
else if (mode == 5) then
CPFEM_dcsde = CPFEM_dcsde_knownGood ! --+>> RESTORE CONSISTENT JACOBIAN FROM FORMER CONVERGED INC
end if
call random_number(rnd)
if (rnd < 0.5_pReal) rnd = 1.0_pReal - rnd
materialpoint_Temperature(IP,cp_en) = Temperature
materialpoint_F0(:,:,IP,cp_en) = ffn
materialpoint_F(:,:,IP,cp_en) = ffn1
CPFEM_cs(:,IP,cp_en) = rnd*CPFEM_odd_stress
CPFEM_dcsde(:,:,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(6)
CPFEM_calc_done = .false.
! --+>> RECYCLING OF FORMER RESULTS (MARC SPECIALTY) <<+--
case (6)
! do nothing
! --+>> RESTORE CONSISTENT JACOBIAN FROM FORMER CONVERGED INC
case (7)
CPFEM_dcsde = CPFEM_dcsde_knownGood
end select
! return the local stress and the jacobian from storage
cauchyStress(:) = CPFEM_cs(:,IP,cp_en)
jacobian(:,:) = CPFEM_dcsdE(:,:,IP,cp_en)
! copy P and dPdF to the output variables
pstress(:,:) = materialpoint_P(:,:,IP,cp_en)
dPdF(:,:,:,:) = materialpoint_dPdF(:,:,:,:,IP,cp_en)
if ((debugger .and. selectiveDebugger) .and. &
mode < 6) then
!$OMP CRITICAL (write2out)
write(6,'(a,x,i2,x,a,x,i4,/,6(f10.3,x)/)') 'stress/MPa at ip', IP, 'el', cp_en, cauchyStress/1e6
write(6,'(a,x,i2,x,a,x,i4,/,6(6(f10.3,x)/))') 'jacobian/GPa at ip', IP, 'el', cp_en, jacobian/1e9
call flush(6)
!$OMP END CRITICAL (write2out)
endif
! return temperature
if (theTime > 0.0_pReal) Temperature = materialpoint_Temperature(IP,cp_en) ! homogenized result except for potentially non-isothermal starting condition.
return
end subroutine
END MODULE CPFEM