! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## !* $Id$ !*************************************** !* Module: HOMOGENIZATION * !*************************************** !* contains: * !* - _init * !* - materialpoint_stressAndItsTangent * !* - _partitionDeformation * !* - _updateState * !* - _averageStressAndItsTangent * !* - _postResults * !*************************************** MODULE homogenization !*** Include other modules *** use prec, only: pInt,pReal,p_vec implicit none ! **************************************************************** ! *** General variables for the homogenization at a *** ! *** material point *** ! **************************************************************** type(p_vec), dimension(:,:), allocatable :: homogenization_state0, & ! pointer array to homogenization state at start of FE increment homogenization_subState0, & ! pointer array to homogenization state at start of homogenization increment homogenization_state ! pointer array to current homogenization state (end of converged time step) integer(pInt), dimension(:,:), allocatable :: homogenization_sizeState, & ! size of state array per grain homogenization_sizePostResults ! size of postResults array per material point real(pReal), dimension(:,:,:,:,:,:), allocatable :: materialpoint_dPdF ! tangent of first P--K stress at IP real(pReal), dimension(:,:,:,:), allocatable :: materialpoint_F0, & ! def grad of IP at start of FE increment materialpoint_F, & ! def grad of IP to be reached at end of FE increment materialpoint_subF0, & ! def grad of IP at beginning of homogenization increment materialpoint_subF, & ! def grad of IP to be reached at end of homog inc materialpoint_P ! first P--K stress of IP real(pReal), dimension(:,:), allocatable :: materialpoint_Temperature, & ! temperature at IP materialpoint_subFrac, & materialpoint_subStep, & materialpoint_subdt real(pReal), dimension(:,:,:), allocatable :: materialpoint_results ! results array of material point logical, dimension(:,:), allocatable :: materialpoint_requested, & materialpoint_converged logical, dimension(:,:,:), allocatable :: materialpoint_doneAndHappy integer(pInt) homogenization_maxSizeState, & homogenization_maxSizePostResults, & materialpoint_sizeResults CONTAINS !************************************** !* Module initialization * !************************************** subroutine homogenization_init(Temperature) use prec, only: pReal,pInt use math, only: math_I3 use debug, only: debug_verbosity use IO, only: IO_error, IO_open_file, IO_open_jobFile use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips use material use constitutive, only: constitutive_maxSizePostResults use crystallite, only: crystallite_maxSizePostResults use homogenization_isostrain use homogenization_RGC implicit none real(pReal) Temperature integer(pInt), parameter :: fileunit = 200 integer(pInt) e,i,g,p,myInstance,j integer(pInt), dimension(:,:), pointer :: thisSize character(len=64), dimension(:,:), pointer :: thisOutput logical knownHomogenization ! --- PARSE HOMOGENIZATIONS FROM CONFIG FILE --- if(.not. IO_open_file(fileunit,material_configFile)) call IO_error (100) ! corrupt config file call homogenization_isostrain_init(fileunit) call homogenization_RGC_init(fileunit) close(fileunit) ! --- WRITE DESCRIPTION FILE FOR HOMOGENIZATION OUTPUT --- if(.not. IO_open_jobFile(fileunit,'outputHomogenization')) then ! problems in writing file call IO_error (50) endif do p = 1,material_Nhomogenization i = homogenization_typeInstance(p) ! which instance of this homogenization type knownHomogenization = .true. ! assume valid select case(homogenization_type(p)) ! split per homogenization type case (homogenization_isostrain_label) thisOutput => homogenization_isostrain_output thisSize => homogenization_isostrain_sizePostResult case (homogenization_RGC_label) thisOutput => homogenization_RGC_output thisSize => homogenization_RGC_sizePostResult case default knownHomogenization = .false. end select write(fileunit,*) write(fileunit,'(a)') '['//trim(homogenization_name(p))//']' write(fileunit,*) if (knownHomogenization) then write(fileunit,'(a)') '(type)'//char(9)//trim(homogenization_type(p)) write(fileunit,'(a,i)') '(ngrains)'//char(9),homogenization_Ngrains(p) do e = 1,homogenization_Noutput(p) write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i) enddo endif enddo close(fileunit) ! --- ALLOCATE AND INITIALIZE GLOBAL VARIABLES --- allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_state(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)); homogenization_sizeState = 0_pInt allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)); homogenization_sizePostResults = 0_pInt allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_dPdF = 0.0_pReal allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems)); allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_F = 0.0_pReal allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = Temperature allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)); materialpoint_requested = .false. allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)); materialpoint_converged = .true. allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)); materialpoint_doneAndHappy = .true. forall (i = 1:mesh_maxNips,e = 1:mesh_NcpElems) materialpoint_F0(1:3,1:3,i,e) = math_I3 materialpoint_F(1:3,1:3,i,e) = math_I3 end forall ! --- ALLOCATE AND INITIALIZE GLOBAL STATE AND POSTRESULTS VARIABLES --- !$OMP PARALLEL DO PRIVATE(myInstance) do e = 1,mesh_NcpElems ! loop over elements myInstance = homogenization_typeInstance(mesh_element(3,e)) do i = 1,FE_Nips(mesh_element(2,e)) ! loop over IPs select case(homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance))) allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance))) allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance))) homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance) homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance) endif homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance) case (homogenization_RGC_label) if (homogenization_RGC_sizeState(myInstance) > 0_pInt) then allocate(homogenization_state0(i,e)%p(homogenization_RGC_sizeState(myInstance))) allocate(homogenization_subState0(i,e)%p(homogenization_RGC_sizeState(myInstance))) allocate(homogenization_state(i,e)%p(homogenization_RGC_sizeState(myInstance))) homogenization_state0(i,e)%p = homogenization_RGC_stateInit(myInstance) homogenization_sizeState(i,e) = homogenization_RGC_sizeState(myInstance) endif homogenization_sizePostResults(i,e) = homogenization_RGC_sizePostResults(myInstance) case default call IO_error(201,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown type 201 is homogenization! end select enddo enddo !$OMP END PARALLEL DO homogenization_maxSizeState = maxval(homogenization_sizeState) homogenization_maxSizePostResults = maxval(homogenization_sizePostResults) materialpoint_sizeResults = 1 & ! grain count + 1 + homogenization_maxSizePostResults & ! homogSize & homogResult + homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results + 1 + constitutive_maxSizePostResults) ! constitutive size & constitutive results allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems)) !$OMP CRITICAL (write2out) write(6,*) write(6,*) '<<<+- homogenization init -+>>>' write(6,*) '$Id$' write(6,*) if (debug_verbosity > 0) then write(6,'(a32,x,7(i5,x))') 'homogenization_state0: ', shape(homogenization_state0) write(6,'(a32,x,7(i5,x))') 'homogenization_subState0: ', shape(homogenization_subState0) write(6,'(a32,x,7(i5,x))') 'homogenization_state: ', shape(homogenization_state) write(6,'(a32,x,7(i5,x))') 'homogenization_sizeState: ', shape(homogenization_sizeState) write(6,'(a32,x,7(i5,x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults) write(6,*) write(6,'(a32,x,7(i5,x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF) write(6,'(a32,x,7(i5,x))') 'materialpoint_F0: ', shape(materialpoint_F0) write(6,'(a32,x,7(i5,x))') 'materialpoint_F: ', shape(materialpoint_F) write(6,'(a32,x,7(i5,x))') 'materialpoint_subF0: ', shape(materialpoint_subF0) write(6,'(a32,x,7(i5,x))') 'materialpoint_subF: ', shape(materialpoint_subF) write(6,'(a32,x,7(i5,x))') 'materialpoint_P: ', shape(materialpoint_P) write(6,'(a32,x,7(i5,x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature) write(6,'(a32,x,7(i5,x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac) write(6,'(a32,x,7(i5,x))') 'materialpoint_subStep: ', shape(materialpoint_subStep) write(6,'(a32,x,7(i5,x))') 'materialpoint_subdt: ', shape(materialpoint_subdt) write(6,'(a32,x,7(i5,x))') 'materialpoint_requested: ', shape(materialpoint_requested) write(6,'(a32,x,7(i5,x))') 'materialpoint_converged: ', shape(materialpoint_converged) write(6,'(a32,x,7(i5,x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy) write(6,*) write(6,'(a32,x,7(i5,x))') 'materialpoint_results: ', shape(materialpoint_results) write(6,*) write(6,'(a32,x,7(i5,x))') 'maxSizeState: ', homogenization_maxSizeState write(6,'(a32,x,7(i5,x))') 'maxSizePostResults: ', homogenization_maxSizePostResults endif call flush(6) !$OMP END CRITICAL (write2out) endsubroutine !******************************************************************** !* parallelized calculation of !* stress and corresponding tangent !* at material points !******************************************************************** subroutine materialpoint_stressAndItsTangent(& updateJaco,& ! flag to initiate Jacobian updating dt & ! time increment ) use prec, only: pInt, & pReal use numerics, only: subStepMinHomog, & subStepSizeHomog, & stepIncreaseHomog, & nHomog, & nMPstate use math, only: math_det3x3, & math_transpose3x3 use FEsolving, only: FEsolving_execElem, & FEsolving_execIP, & terminallyIll use mesh, only: mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: homogenization_Ngrains use constitutive, only: constitutive_state0, & constitutive_partionedState0, & constitutive_state use crystallite, only: crystallite_Temperature, & crystallite_F0, & crystallite_Fp0, & crystallite_Fp, & crystallite_Lp0, & crystallite_Lp, & crystallite_dPdF, & crystallite_dPdF0, & crystallite_Tstar0_v, & crystallite_Tstar_v, & crystallite_partionedTemperature0, & crystallite_partionedF0, & crystallite_partionedF, & crystallite_partionedFp0, & crystallite_partionedLp0, & crystallite_partioneddPdF0, & crystallite_partionedTstar0_v, & crystallite_dt, & crystallite_requested, & crystallite_converged, & crystallite_stressAndItsTangent, & crystallite_orientations use debug, only: debug_verbosity, & debug_selectiveDebugger, & debug_e, & debug_i, & debug_MaterialpointLoopDistribution, & debug_MaterialpointStateLoopDistribution use math, only: math_pDecomposition implicit none real(pReal), intent(in) :: dt logical, intent(in) :: updateJaco integer(pInt) NiterationHomog,NiterationMPstate integer(pInt) g,i,e,myNgrains logical error ! ------ initialize to starting condition ------ if (debug_verbosity > 2 .and. debug_e > 0 .and. debug_e <= mesh_NcpElems .and. debug_i > 0 .and. debug_i <= mesh_maxNips) then !$OMP CRITICAL (write2out) write (6,*) write (6,'(a,i5,x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i write (6,'(a,/,12(x),f14.9)') '<< HOMOG >> Temp0', materialpoint_Temperature(debug_i,debug_e) write (6,'(a,/,3(12(x),3(f14.9,x)/))') '<< HOMOG >> F0', math_transpose3x3(materialpoint_F0(1:3,1:3,debug_i,debug_e)) write (6,'(a,/,3(12(x),3(f14.9,x)/))') '<< HOMOG >> F', math_transpose3x3(materialpoint_F(1:3,1:3,debug_i,debug_e)) !$OMP END CRITICAL (write2out) endif !$OMP PARALLEL DO PRIVATE(myNgrains) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed ! initialize restoration points of grain... forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures crystallite_partionedTemperature0(1:myNgrains,i,e) = materialpoint_Temperature(i,e) ! ...temperatures crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_F0(1:3,1:3,1:myNgrains,i,e) ! ...def grads crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress ! initialize restoration points of ... if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenization state materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad materialpoint_subFrac(i,e) = 0.0_pReal materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <> materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size materialpoint_requested(i,e) = .true. ! everybody requires calculation enddo enddo !$OMP END PARALLEL DO NiterationHomog = 0_pInt ! ------ cutback loop ------ do while (.not. terminallyIll .and. & any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog)) ! cutback loop for material points !$OMP PARALLEL DO PRIVATE(myNgrains) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed if ( materialpoint_converged(i,e) ) then #ifndef _OPENMP if (debug_verbosity > 2 .and. ((e == debug_e .and. i == debug_i) .or. .not. debug_selectiveDebugger)) then write(6,'(a,x,f10.8,x,a,x,f10.8,x,a,/)') '<< HOMOG >> winding forward from', & materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', & materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent' endif #endif ! calculate new subStep and new subFrac materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e) !$OMP FLUSH(materialpoint_subFrac) materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), & stepIncreaseHomog*materialpoint_subStep(i,e)) ! <> !$OMP FLUSH(materialpoint_subStep) ! still stepping needed if (materialpoint_subStep(i,e) > subStepMinHomog) then ! wind forward grain starting point of... crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature(1:myNgrains,i,e) ! ...temperatures crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad !$OMP FLUSH(materialpoint_subF0) elseif (materialpoint_requested(i,e)) then ! this materialpoint just converged ! already at final time (??) if (debug_verbosity > 0) then !$OMP CRITICAL (distributionHomog) debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = & debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1 !$OMP END CRITICAL (distributionHomog) endif endif ! materialpoint didn't converge, so we need a cutback here else if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep ! cutback makes no sense and... !$OMP CRITICAL (setTerminallyIll) terminallyIll = .true. ! ...one kills all !$OMP END CRITICAL (setTerminallyIll) else ! cutback makes sense materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback !$OMP FLUSH(materialpoint_subStep) #ifndef _OPENMP if (debug_verbosity > 2 .and. ((e == debug_e .and. i == debug_i) .or. .not. debug_selectiveDebugger)) then write(6,'(a,x,f10.8,/)') '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',& materialpoint_subStep(i,e) endif #endif ! restore... crystallite_Temperature(1:myNgrains,i,e) = crystallite_partionedTemperature0(1:myNgrains,i,e) ! ...temperatures ! ...initial def grad unchanged crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme endif endif materialpoint_requested(i,e) = materialpoint_subStep(i,e) > subStepMinHomog if (materialpoint_requested(i,e)) then materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + & materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e)) materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt materialpoint_doneAndHappy(1:2,i,e) = (/.false.,.true./) endif enddo ! loop IPs enddo ! loop elements !$OMP END PARALLEL DO ! ------ convergence loop material point homogenization ------ NiterationMPstate = 0_pInt do while (.not. terminallyIll .and. & any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & ) .and. & NiterationMPstate < nMPstate) ! convergence loop for materialpoint NiterationMPstate = NiterationMPstate + 1 ! --+>> deformation partitioning <<+-- ! ! based on materialpoint_subF0,.._subF, ! crystallite_partionedF0, ! homogenization_state ! results in crystallite_partionedF !$OMP PARALLEL DO PRIVATE(myNgrains) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed if ( materialpoint_requested(i,e) .and. & ! process requested but... .not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents else crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore endif enddo enddo !$OMP END PARALLEL DO ! --+>> crystallite integration <<+-- ! ! based on crystallite_partionedF0,.._partionedF ! incrementing by crystallite_dt call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains ! --+>> state update <<+-- !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed if ( materialpoint_requested(i,e) .and. & .not. materialpoint_doneAndHappy(1,i,e)) then if (.not. all(crystallite_converged(:,i,e))) then materialpoint_doneAndHappy(1:2,i,e) = (/.true.,.false./) materialpoint_converged(i,e) = .false. else materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e) materialpoint_converged(i,e) = all(homogenization_updateState(i,e)) ! converged if done and happy endif !$OMP FLUSH(materialpoint_converged) if (materialpoint_converged(i,e)) then if (debug_verbosity > 0) then !$OMP CRITICAL (distributionMPState) debug_MaterialpointStateLoopdistribution(NiterationMPstate) = & debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1 !$OMP END CRITICAL (distributionMPState) endif endif endif enddo enddo !$OMP END PARALLEL DO enddo ! homogenization convergence loop NiterationHomog = NiterationHomog + 1_pInt enddo ! cutback loop if (.not. terminallyIll ) then call crystallite_orientations() ! calculate crystal orientations !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed call homogenization_averageStressAndItsTangent(i,e) call homogenization_averageTemperature(i,e) enddo; enddo !$OMP END PARALLEL DO else !$OMP CRITICAL (write2out) write (6,*) write (6,'(a)') '<< HOMOG >> Material Point terminally ill' write (6,*) !$OMP END CRITICAL (write2out) endif return endsubroutine !******************************************************************** !* parallelized calculation of !* result array at material points !******************************************************************** subroutine materialpoint_postResults(dt) use FEsolving, only: FEsolving_execElem, FEsolving_execIP use mesh, only: mesh_element use material, only: homogenization_Ngrains, microstructure_crystallite use constitutive, only: constitutive_sizePostResults, constitutive_postResults use crystallite, only: crystallite_sizePostResults, crystallite_postResults implicit none real(pReal), intent(in) :: dt integer(pInt) g,i,e,pos,size,myNgrains,myCrystallite !$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,pos,size) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) myCrystallite = microstructure_crystallite(mesh_element(4,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed pos = 0_pInt materialpoint_results(pos+1,i,e) = myNgrains ! tell number of grains at materialpoint pos = pos + 1_pInt size = homogenization_sizePostResults(i,e) materialpoint_results(pos+1,i,e) = size ! tell size of homogenization results pos = pos + 1_pInt if (size > 0_pInt) then ! any homogenization results to mention? materialpoint_results(pos+1:pos+size,i,e) = homogenization_postResults(i,e) ! tell homogenization results pos = pos + size endif do g = 1,myNgrains ! loop over all grains size = (1 + crystallite_sizePostResults(myCrystallite)) + (1 + constitutive_sizePostResults(g,i,e)) materialpoint_results(pos+1:pos+size,i,e) = crystallite_postResults(dt,g,i,e) ! tell crystallite results pos = pos + size enddo enddo enddo !$OMP END PARALLEL DO endsubroutine !******************************************************************** ! partition material point def grad onto constituents !******************************************************************** subroutine homogenization_partitionDeformation(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_partionedF0,crystallite_partionedF use homogenization_isostrain use homogenization_RGC implicit none integer(pInt), intent(in) :: ip,el select case(homogenization_type(mesh_element(3,el))) case (homogenization_isostrain_label) !* isostrain call homogenization_isostrain_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),& materialpoint_subF(1:3,1:3,ip,el),& homogenization_state(ip,el), & ip, & el) !* RGC homogenization case (homogenization_RGC_label) call homogenization_RGC_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),& materialpoint_subF(1:3,1:3,ip,el),& homogenization_state(ip,el), & ip, & el) end select endsubroutine !******************************************************************** ! update the internal state of the homogenization scheme ! and tell whether "done" and "happy" with result !******************************************************************** function homogenization_updateState(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_P,crystallite_dPdF,crystallite_partionedF,crystallite_partionedF0 ! modified <<>> use homogenization_isostrain use homogenization_RGC implicit none integer(pInt), intent(in) :: ip,el logical, dimension(2) :: homogenization_updateState select case(homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) homogenization_updateState = & homogenization_isostrain_updateState( homogenization_state(ip,el), & crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & ip, & el) !* RGC homogenization case (homogenization_RGC_label) homogenization_updateState = & homogenization_RGC_updateState( homogenization_state(ip,el), & homogenization_subState0(ip,el), & crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),& materialpoint_subF(1:3,1:3,ip,el),& materialpoint_subdt(ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & ip, & el) end select return endfunction !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** subroutine homogenization_averageStressAndItsTangent(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_P,crystallite_dPdF use homogenization_RGC use homogenization_isostrain implicit none integer(pInt), intent(in) :: ip,el select case(homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & ip, & el) !* RGC homogenization case (homogenization_RGC_label) call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & ip, & el) end select return endsubroutine !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** subroutine homogenization_averageTemperature(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type, homogenization_maxNgrains use crystallite, only: crystallite_Temperature use homogenization_isostrain use homogenization_RGC implicit none integer(pInt), intent(in) :: ip,el select case(homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) materialpoint_Temperature(ip,el) = & homogenization_isostrain_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,ip,el), ip, el) !* RGC homogenization case (homogenization_RGC_label) materialpoint_Temperature(ip,el) = & homogenization_RGC_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,ip,el), ip, el) end select return endsubroutine !******************************************************************** ! return array of homogenization results for post file inclusion ! call only, if homogenization_sizePostResults(ip,el) > 0 !! !******************************************************************** function homogenization_postResults(& ip, & ! integration point el & ! element ) use prec, only: pReal,pInt use mesh, only: mesh_element use material, only: homogenization_type use homogenization_isostrain use homogenization_RGC implicit none !* Definition of variables integer(pInt), intent(in) :: ip,el real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults homogenization_postResults = 0.0_pReal select case (homogenization_type(mesh_element(3,el))) !* isostrain case (homogenization_isostrain_label) homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el) !* RGC homogenization case (homogenization_RGC_label) homogenization_postResults = homogenization_RGC_postResults(homogenization_state(ip,el),ip,el) end select return endfunction END MODULE