#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,math,string import numpy as np from collections import defaultdict from optparse import OptionParser import damask scriptID = '$Id$' scriptName = scriptID.split()[1] def Mises(what,tensor): dev = tensor - np.trace(tensor)/3.0*np.eye(3) symdev = 0.5*(dev+dev.T) return math.sqrt(np.sum(symdev*symdev.T)* { 'stress': 3.0/2.0, 'strain': 2.0/3.0, }[what.lower()]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add vonMises equivalent values for symmetric part of requested strains and/or stresses. """, version = string.replace(scriptID,'\n','\\n') ) parser.add_option('-e','--strain', dest='strain', action='extend', type='string', metavar='', help='heading(s) of columns containing strain tensors') parser.add_option('-s','--stress', dest='stress', action='extend', type='string', metavar='', help='heading(s) of columns containing stress tensors') parser.set_defaults(strain = []) parser.set_defaults(stress = []) (options,filenames) = parser.parse_args() if len(options.strain) + len(options.stress) == 0: parser.error('no data column specified...') datainfo = { # list of requested labels per datatype 'strain': {'len':9, 'label':[]}, 'stress': {'len':9, 'label':[]}, } if options.strain != None: datainfo['strain']['label'] += options.strain if options.stress != None: datainfo['stress']['label'] += options.stress # ------------------------------------------ setup file handles --------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) # ------------------------------------------ loop over input files --------------------------------------- for file in files: if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n') table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:])) active = defaultdict(list) column = defaultdict(dict) for datatype,info in datainfo.items(): for label in info['label']: key = '1_%s'%label if key not in table.labels: file['croak'].write('column %s not found...\n'%key) else: active[datatype].append(label) column[datatype][label] = table.labels.index(key) # remember columns of requested data # ------------------------------------------ assemble header --------------------------------------- for datatype,labels in active.items(): # loop over vector,tensor for label in labels: # loop over all requested determinants table.labels_append('Mises(%s)'%label) # extend ASCII header with new labels table.head_write() # ------------------------------------------ process data ---------------------------------------- outputAlive = True while outputAlive and table.data_read(): # read next data line of ASCII table for datatype,labels in active.items(): # loop over vector,tensor for label in labels: # loop over all requested norms table.data_append(Mises(datatype, np.array(map(float,table.data[column[datatype][label]: column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(3,3))) outputAlive = table.data_write() # output processed line # ------------------------------------------ output result --------------------------------------- outputAlive and table.output_flush() # just in case of buffered ASCII table file['input'].close() # close input ASCII table (works for stdin) file['output'].close() # close output ASCII table (works for stdout) if file['name'] != 'STDIN': os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new