#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,math,string import numpy as np from optparse import OptionParser from scipy import ndimage import damask scriptID = '$Id$' scriptName = scriptID.split()[1] def periodic_3Dpad(array, rimdim=(1,1,1)): rimdim = np.array(rimdim,'i') size = np.array(array.shape,'i') padded = np.empty(size+2*rimdim,array.dtype) padded[rimdim[0]:rimdim[0]+size[0], rimdim[1]:rimdim[1]+size[1], rimdim[2]:rimdim[2]+size[2]] = array p = np.zeros(3,'i') for side in xrange(3): for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]): for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]): for p[side%3] in xrange(rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] return padded # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- features = [ \ {'aliens': 1, 'name': 'biplane'}, {'aliens': 1, 'name': 'boundary'}, {'aliens': 2, 'name': 'tripleline'}, {'aliens': 3, 'name': 'quadruplepoint'} ] neighborhoods = { 'neumann':np.array([ [-1, 0, 0], [ 1, 0, 0], [ 0,-1, 0], [ 0, 1, 0], [ 0, 0,-1], [ 0, 0, 1], ]), 'moore':np.array([ [-1,-1,-1], [ 0,-1,-1], [ 1,-1,-1], [-1, 0,-1], [ 0, 0,-1], [ 1, 0,-1], [-1, 1,-1], [ 0, 1,-1], [ 1, 1,-1], [-1,-1, 0], [ 0,-1, 0], [ 1,-1, 0], [-1, 0, 0], # [ 1, 0, 0], [-1, 1, 0], [ 0, 1, 0], [ 1, 1, 0], [-1,-1, 1], [ 0,-1, 1], [ 1,-1, 1], [-1, 0, 1], [ 0, 0, 1], [ 1, 0, 1], [-1, 1, 1], [ 0, 1, 1], [ 1, 1, 1], ]) } parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add column(s) containing Euclidean distance to grain structural features: boundaries, triple lines, and quadruple points. """, version = string.replace(scriptID,'\n','\\n') ) parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar='string', help='column heading for coordinates [%default]') parser.add_option('-i','--identifier', dest='id', action='store', type='string', metavar = 'string', help='heading of column containing grain identifier [%default]') parser.add_option('-t','--type', dest='type', action='extend', type='string', metavar='', help='feature type (%s)'%(', '.join(map(lambda x:', '.join([x['name']]),features)))) parser.add_option('-n','--neighborhood',dest='neigborhood', action='store', type='choice', choices=neighborhoods.keys(), metavar='string', help='type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) parser.set_defaults(type = []) parser.set_defaults(coords = 'ip') parser.set_defaults(id = 'texture') parser.set_defaults(neighborhood = 'neumann') (options,filenames) = parser.parse_args() if len(options.type) == 0: parser.error('please select a feature type') if not set(options.type).issubset(set(map(lambda x: x['name'],features))): parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:', '.join([x['name']]),features)))) if 'biplane' in options.type and 'boundary' in options.type: parser.error("please select only one alias for 'biplane' and 'boundary'") feature_list = [] for i,feature in enumerate(features): if feature['name'] in options.type: feature_list.append(i) # remember valid features # ------------------------------------------ setup file handles ----------------------------------- files = [] for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) # ------------------------------------------ loop over input files --------------------------------- for file in files: file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:])) # --------------- figure out position of labels and coordinates ------------------------------------ try: locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data except ValueError: file['croak'].write('no coordinate data found...\n'%key) continue if options.id not in table.labels: file['croak'].write('column %s not found...\n'%options.id) continue # ------------------------------------------ assemble header --------------------------------------- for feature in feature_list: table.labels_append('ED_%s(%s)'%(features[feature]['name'],options.id)) # extend ASCII header with new labels table.head_write() # ------------------------------------------ process data --------------------------------------- table.data_readArray([options.coords+'.x',options.coords+'.y',options.coords+'.z',options.id]) grid = [{},{},{}] for i in xrange(len(table.data)): for j in xrange(3): grid[j][str(table.data[i,j])] = True resolution = np.array(map(len,grid),'i') unitlength = 0.0 for i,r in enumerate(resolution): if r > 1: unitlength = max(unitlength,(max(map(float,grid[i].keys()))-min(map(float,grid[i].keys())))/(r-1.0)) neighborhood = neighborhoods[options.neighborhood] convoluted = np.empty([len(neighborhood)]+list(resolution+2),'i') microstructure = periodic_3Dpad(np.array(table.data[:,3].reshape(resolution),'i')) for i,p in enumerate(neighborhood): stencil = np.zeros((3,3,3),'i') stencil[1,1,1] = -1 stencil[p[0]+1, p[1]+1, p[2]+1] = 1 convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil) distance = np.ones((len(feature_list),resolution[0],resolution[1],resolution[2]),'d') convoluted = np.sort(convoluted,axis=0) uniques = np.zeros(resolution) check = np.empty(resolution) check[:,:,:] = np.nan for i in xrange(len(neighborhood)): uniques += np.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1) check = convoluted[i,1:-1,1:-1,1:-1] for i,feature_id in enumerate(feature_list): distance[i,:,:,:] = np.where(uniques > features[feature_id]['aliens'],0.0,1.0) for i in xrange(len(feature_list)): distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[unitlength]*3 distance.shape = (len(feature_list),resolution.prod()) # ------------------------------------------ process data --------------------------------------- table.data_rewind() l = 0 while table.data_read(): for i in xrange(len(feature_list)): table.data_append(distance[i,l]) # add all distance fields l += 1 outputAlive = table.data_write() # output processed line # ------------------------------------------ output result --------------------------------------- outputAlive and table.output_flush() # just in case of buffered ASCII table file['input'].close() # close input ASCII table (works for stdin) file['output'].close() # close output ASCII table (works for stdout) os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new