!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for adiabatic temperature evolution !> @details to be done !-------------------------------------------------------------------------------------------------- module thermal_adiabatic use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & thermal_adiabatic_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & thermal_adiabatic_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & thermal_adiabatic_output !< name of each post result output integer(pInt), dimension(:), allocatable, target, public :: & thermal_adiabatic_Noutput !< number of outputs per instance of this thermal model enum, bind(c) enumerator :: undefined_ID, & temperature_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & thermal_adiabatic_outputID !< ID of each post result output public :: & thermal_adiabatic_init, & thermal_adiabatic_updateState, & thermal_adiabatic_getSourceAndItsTangent, & thermal_adiabatic_getSpecificHeat, & thermal_adiabatic_getMassDensity, & thermal_adiabatic_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine thermal_adiabatic_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & thermal_type, & thermal_typeInstance, & homogenization_Noutput, & THERMAL_ADIABATIC_label, & THERMAL_adiabatic_ID, & material_homog, & mappingHomogenization, & thermalState, & thermalMapping, & thermal_initialT, & temperature, & temperatureRate, & material_partHomogenization implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o integer(pInt) :: sizeState integer(pInt) :: NofMyHomog character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_ADIABATIC_label//' init -+>>>' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(thermal_type == THERMAL_adiabatic_ID),pInt) if (maxNinstance == 0_pInt) return allocate(thermal_adiabatic_sizePostResults(maxNinstance), source=0_pInt) allocate(thermal_adiabatic_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt) allocate(thermal_adiabatic_output (maxval(homogenization_Noutput),maxNinstance)) thermal_adiabatic_output = '' allocate(thermal_adiabatic_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID) allocate(thermal_adiabatic_Noutput (maxNinstance), source=0_pInt) rewind(fileUnit) section = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization> line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next homog section section = section + 1_pInt ! advance homog section counter cycle ! skip to next line endif if (section > 0_pInt ) then; if (thermal_type(section) == THERMAL_adiabatic_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran instance = thermal_typeInstance(section) ! which instance of my thermal is present homog chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case ('temperature') thermal_adiabatic_Noutput(instance) = thermal_adiabatic_Noutput(instance) + 1_pInt thermal_adiabatic_outputID(thermal_adiabatic_Noutput(instance),instance) = temperature_ID thermal_adiabatic_output(thermal_adiabatic_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) end select end select endif; endif enddo parsingFile initializeInstances: do section = 1_pInt, size(thermal_type) if (thermal_type(section) == THERMAL_adiabatic_ID) then NofMyHomog=count(material_homog==section) instance = thermal_typeInstance(section) !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputsLoop: do o = 1_pInt,thermal_adiabatic_Noutput(instance) select case(thermal_adiabatic_outputID(o,instance)) case(temperature_ID) mySize = 1_pInt end select if (mySize > 0_pInt) then ! any meaningful output found thermal_adiabatic_sizePostResult(o,instance) = mySize thermal_adiabatic_sizePostResults(instance) = thermal_adiabatic_sizePostResults(instance) + mySize endif enddo outputsLoop ! allocate state arrays sizeState = 1_pInt thermalState(section)%sizeState = sizeState thermalState(section)%sizePostResults = thermal_adiabatic_sizePostResults(instance) allocate(thermalState(section)%state0 (sizeState,NofMyHomog), source=thermal_initialT(section)) allocate(thermalState(section)%subState0(sizeState,NofMyHomog), source=thermal_initialT(section)) allocate(thermalState(section)%state (sizeState,NofMyHomog), source=thermal_initialT(section)) nullify(thermalMapping(section)%p) thermalMapping(section)%p => mappingHomogenization(1,:,:) deallocate(temperature(section)%p) temperature(section)%p => thermalState(section)%state(1,:) deallocate(temperatureRate(section)%p) allocate (temperatureRate(section)%p(NofMyHomog), source=0.0_pReal) endif enddo initializeInstances end subroutine thermal_adiabatic_init !-------------------------------------------------------------------------------------------------- !> @brief calculates adiabatic change in temperature based on local heat generation model !-------------------------------------------------------------------------------------------------- function thermal_adiabatic_updateState(subdt, ip, el) use numerics, only: & err_thermal_tolAbs, & err_thermal_tolRel use material, only: & mappingHomogenization, & thermalState, & temperature, & temperatureRate, & thermalMapping implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & subdt logical, dimension(2) :: & thermal_adiabatic_updateState integer(pInt) :: & homog, & offset real(pReal) :: & T, Tdot, dTdot_dT homog = mappingHomogenization(2,ip,el) offset = mappingHomogenization(1,ip,el) T = thermalState(homog)%subState0(1,offset) call thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el) T = T + subdt*Tdot/(thermal_adiabatic_getSpecificHeat(ip,el)*thermal_adiabatic_getMassDensity(ip,el)) thermal_adiabatic_updateState = [ abs(T - thermalState(homog)%state(1,offset)) & <= err_thermal_tolAbs & .or. abs(T - thermalState(homog)%state(1,offset)) & <= err_thermal_tolRel*abs(thermalState(homog)%state(1,offset)), & .true.] temperature (homog)%p(thermalMapping(homog)%p(ip,el)) = T temperatureRate(homog)%p(thermalMapping(homog)%p(ip,el)) = & (thermalState(homog)%state(1,offset) - thermalState(homog)%subState0(1,offset))/(subdt+tiny(0.0_pReal)) end function thermal_adiabatic_updateState !-------------------------------------------------------------------------------------------------- !> @brief returns heat generation rate !-------------------------------------------------------------------------------------------------- subroutine thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el) use math, only: & math_Mandel6to33 use material, only: & homogenization_Ngrains, & mappingHomogenization, & phaseAt, & thermal_typeInstance, & phase_Nsources, & phase_source, & SOURCE_thermal_dissipation_ID, & SOURCE_thermal_externalheat_ID use source_thermal_dissipation, only: & source_thermal_dissipation_getRateAndItsTangent use source_thermal_externalheat, only: & source_thermal_externalheat_getRateAndItsTangent use crystallite, only: & crystallite_Tstar_v, & crystallite_Lp implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & T real(pReal), intent(out) :: & Tdot, dTdot_dT real(pReal) :: & my_Tdot, my_dTdot_dT integer(pInt) :: & phase, & homog, & offset, & instance, & grain, & source homog = mappingHomogenization(2,ip,el) offset = mappingHomogenization(1,ip,el) instance = thermal_typeInstance(homog) Tdot = 0.0_pReal dTdot_dT = 0.0_pReal do grain = 1, homogenization_Ngrains(homog) phase = phaseAt(grain,ip,el) do source = 1, phase_Nsources(phase) select case(phase_source(source,phase)) case (SOURCE_thermal_dissipation_ID) call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, & crystallite_Tstar_v(1:6,grain,ip,el), & crystallite_Lp(1:3,1:3,grain,ip,el), & grain, ip, el) case (SOURCE_thermal_externalheat_ID) call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, & grain, ip, el) case default my_Tdot = 0.0_pReal my_dTdot_dT = 0.0_pReal end select Tdot = Tdot + my_Tdot dTdot_dT = dTdot_dT + my_dTdot_dT enddo enddo Tdot = Tdot/real(homogenization_Ngrains(homog),pReal) dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal) end subroutine thermal_adiabatic_getSourceAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized specific heat capacity !-------------------------------------------------------------------------------------------------- function thermal_adiabatic_getSpecificHeat(ip,el) use lattice, only: & lattice_specificHeat use material, only: & homogenization_Ngrains, & mappingHomogenization, & material_phase use mesh, only: & mesh_element use crystallite, only: & crystallite_push33ToRef implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: & thermal_adiabatic_getSpecificHeat integer(pInt) :: & homog, grain thermal_adiabatic_getSpecificHeat = 0.0_pReal homog = mappingHomogenization(2,ip,el) do grain = 1, homogenization_Ngrains(mesh_element(3,el)) thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat + & lattice_specificHeat(material_phase(grain,ip,el)) enddo thermal_adiabatic_getSpecificHeat = & thermal_adiabatic_getSpecificHeat/real(homogenization_Ngrains(mesh_element(3,el)),pReal) end function thermal_adiabatic_getSpecificHeat !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized mass density !-------------------------------------------------------------------------------------------------- function thermal_adiabatic_getMassDensity(ip,el) use lattice, only: & lattice_massDensity use material, only: & homogenization_Ngrains, & mappingHomogenization, & material_phase use mesh, only: & mesh_element use crystallite, only: & crystallite_push33ToRef implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: & thermal_adiabatic_getMassDensity integer(pInt) :: & homog, grain thermal_adiabatic_getMassDensity = 0.0_pReal homog = mappingHomogenization(2,ip,el) do grain = 1, homogenization_Ngrains(mesh_element(3,el)) thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity + & lattice_massDensity(material_phase(grain,ip,el)) enddo thermal_adiabatic_getMassDensity = & thermal_adiabatic_getMassDensity/real(homogenization_Ngrains(mesh_element(3,el)),pReal) end function thermal_adiabatic_getMassDensity !-------------------------------------------------------------------------------------------------- !> @brief return array of thermal results !-------------------------------------------------------------------------------------------------- function thermal_adiabatic_postResults(ip,el) use material, only: & mappingHomogenization, & thermal_typeInstance, & thermalMapping, & temperature implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element real(pReal), dimension(thermal_adiabatic_sizePostResults(thermal_typeInstance(mappingHomogenization(2,ip,el)))) :: & thermal_adiabatic_postResults integer(pInt) :: & instance, homog, offset, o, c homog = mappingHomogenization(2,ip,el) offset = thermalMapping(homog)%p(ip,el) instance = thermal_typeInstance(homog) c = 0_pInt thermal_adiabatic_postResults = 0.0_pReal do o = 1_pInt,thermal_adiabatic_Noutput(instance) select case(thermal_adiabatic_outputID(o,instance)) case (temperature_ID) thermal_adiabatic_postResults(c+1_pInt) = temperature(homog)%p(offset) c = c + 1 end select enddo end function thermal_adiabatic_postResults end module thermal_adiabatic