import sys from io import StringIO import multiprocessing from functools import partial import numpy as np from scipy import ndimage,spatial from . import VTK from . import util from . import Environment from . import grid_filters class Geom: """Geometry definition for grid solvers.""" def __init__(self,microstructure,size,origin=[0.0,0.0,0.0],homogenization=1,comments=[]): """ New geometry definition from array of microstructures and size. Parameters ---------- microstructure : numpy.ndarray microstructure array (3D) size : list or numpy.ndarray physical size of the microstructure in meter. origin : list or numpy.ndarray, optional physical origin of the microstructure in meter. homogenization : integer, optional homogenization index. comments : list of str, optional comments lines. """ self.set_microstructure(microstructure) self.set_size(size) self.set_origin(origin) self.set_homogenization(homogenization) self.set_comments(comments) def __repr__(self): """Basic information on geometry definition.""" return util.srepr([ 'grid a b c: {}'.format(' x '.join(map(str,self.get_grid ()))), 'size x y z: {}'.format(' x '.join(map(str,self.get_size ()))), 'origin x y z: {}'.format(' '.join(map(str,self.get_origin()))), 'homogenization: {}'.format(self.get_homogenization()), '# microstructures: {}'.format(len(np.unique(self.microstructure))), 'max microstructure: {}'.format(np.nanmax(self.microstructure)), ]) def update(self,microstructure=None,size=None,origin=None,rescale=False): """ Update microstructure and size. Parameters ---------- microstructure : numpy.ndarray, optional microstructure array (3D). size : list or numpy.ndarray, optional physical size of the microstructure in meter. origin : list or numpy.ndarray, optional physical origin of the microstructure in meter. rescale : bool, optional ignore size parameter and rescale according to change of grid points. """ grid_old = self.get_grid() size_old = self.get_size() origin_old = self.get_origin() unique_old = len(np.unique(self.microstructure)) max_old = np.nanmax(self.microstructure) if size is not None and rescale: raise ValueError('Either set size explicitly or rescale automatically') self.set_microstructure(microstructure) self.set_origin(origin) if size is not None: self.set_size(size) elif rescale: self.set_size(self.get_grid()/grid_old*self.size) message = ['grid a b c: {}'.format(' x '.join(map(str,grid_old)))] if np.any(grid_old != self.get_grid()): message[-1] = util.delete(message[-1]) message.append(util.emph('grid a b c: {}'.format(' x '.join(map(str,self.get_grid()))))) message.append('size x y z: {}'.format(' x '.join(map(str,size_old)))) if np.any(size_old != self.get_size()): message[-1] = util.delete(message[-1]) message.append(util.emph('size x y z: {}'.format(' x '.join(map(str,self.get_size()))))) message.append('origin x y z: {}'.format(' '.join(map(str,origin_old)))) if np.any(origin_old != self.get_origin()): message[-1] = util.delete(message[-1]) message.append(util.emph('origin x y z: {}'.format(' '.join(map(str,self.get_origin()))))) message.append('homogenization: {}'.format(self.get_homogenization())) message.append('# microstructures: {}'.format(unique_old)) if unique_old != len(np.unique(self.microstructure)): message[-1] = util.delete(message[-1]) message.append(util.emph('# microstructures: {}'.format(len(np.unique(self.microstructure))))) message.append('max microstructure: {}'.format(max_old)) if max_old != np.nanmax(self.microstructure): message[-1] = util.delete(message[-1]) message.append(util.emph('max microstructure: {}'.format(np.nanmax(self.microstructure)))) return util.return_message(message) def set_comments(self,comments): """ Replace all existing comments. Parameters ---------- comments : list of str new comments. """ self.comments = [] self.add_comments(comments) def add_comments(self,comments): """ Append comments to existing comments. Parameters ---------- comments : list of str new comments. """ self.comments += [str(c) for c in comments] if isinstance(comments,list) else [str(comments)] def set_microstructure(self,microstructure): """ Replace the existing microstructure representation. Parameters ---------- microstructure : numpy.ndarray microstructure array (3D). """ if microstructure is not None: if len(microstructure.shape) != 3: raise ValueError('Invalid microstructure shape {}'.format(microstructure.shape)) elif microstructure.dtype not in np.sctypes['float'] + np.sctypes['int']: raise TypeError('Invalid data type {} for microstructure'.format(microstructure.dtype)) else: self.microstructure = np.copy(microstructure) def set_size(self,size): """ Replace the existing size information. Parameters ---------- size : list or numpy.ndarray physical size of the microstructure in meter. """ if size is None: grid = np.asarray(self.microstructure.shape) self.size = grid/np.max(grid) else: if len(size) != 3 or any(np.array(size)<=0): raise ValueError('Invalid size {}'.format(size)) else: self.size = np.array(size) def set_origin(self,origin): """ Replace the existing origin information. Parameters ---------- origin : list or numpy.ndarray physical origin of the microstructure in meter """ if origin is not None: if len(origin) != 3: raise ValueError('Invalid origin {}'.format(origin)) else: self.origin = np.array(origin) def set_homogenization(self,homogenization): """ Replace the existing homogenization index. Parameters ---------- homogenization : integer homogenization index """ if homogenization is not None: if not isinstance(homogenization,int) or homogenization < 1: raise TypeError('Invalid homogenization {}'.format(homogenization)) else: self.homogenization = homogenization @property def grid(self): return self.get_grid() @property def N_microstructure(self): return len(np.unique(self.microstructure)) def get_microstructure(self): """Return the microstructure representation.""" return np.copy(self.microstructure) def get_size(self): """Return the physical size in meter.""" return np.copy(self.size) def get_origin(self): """Return the origin in meter.""" return np.copy(self.origin) def get_grid(self): """Return the grid discretization.""" return np.array(self.microstructure.shape) def get_homogenization(self): """Return the homogenization index.""" return self.homogenization def get_comments(self): """Return the comments.""" return self.comments[:] def get_header(self): """Return the full header (grid, size, origin, homogenization, comments).""" header = ['{} header'.format(len(self.comments)+4)] + self.comments header.append('grid a {} b {} c {}'.format(*self.get_grid())) header.append('size x {} y {} z {}'.format(*self.get_size())) header.append('origin x {} y {} z {}'.format(*self.get_origin())) header.append('homogenization {}'.format(self.get_homogenization())) return header @staticmethod def from_file(fname): """ Read a geom file. Parameters ---------- fname : str or file handle geometry file to read. """ try: f = open(fname) except TypeError: f = fname f.seek(0) header_length,keyword = f.readline().split()[:2] header_length = int(header_length) content = f.readlines() if not keyword.startswith('head') or header_length < 3: raise TypeError('Header length information missing or invalid') comments = [] for i,line in enumerate(content[:header_length]): items = line.split('#')[0].lower().strip().split() key = items[0] if items else '' if key == 'grid': grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']]) elif key == 'size': size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']]) elif key == 'origin': origin = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']]) elif key == 'homogenization': homogenization = int(items[1]) else: comments.append(line.strip()) microstructure = np.empty(grid.prod()) # initialize as flat array i = 0 for line in content[header_length:]: items = line.split('#')[0].split() if len(items) == 3: if items[1].lower() == 'of': items = np.ones(int(items[0]))*float(items[2]) elif items[1].lower() == 'to': items = np.linspace(int(items[0]),int(items[2]), abs(int(items[2])-int(items[0]))+1,dtype=float) else: items = list(map(float,items)) else: items = list(map(float,items)) microstructure[i:i+len(items)] = items i += len(items) if i != grid.prod(): raise TypeError('Invalid file: expected {} entries, found {}'.format(grid.prod(),i)) microstructure = microstructure.reshape(grid,order='F') if not np.any(np.mod(microstructure.flatten(),1) != 0.0): # no float present microstructure = microstructure.astype('int') return Geom(microstructure.reshape(grid),size,origin,homogenization,comments) @staticmethod def _find_closest_seed(seeds, weights, point): return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights) @staticmethod def from_Laguerre_tessellation(grid,size,seeds,weights,periodic=True): """ Generate geometry from Laguerre tessellation. Parameters ---------- grid : numpy.ndarray of shape (3) number of grid points in x,y,z direction. size : list or numpy.ndarray of shape (3) physical size of the microstructure in meter. seeds : numpy.ndarray of shape (:,3) position of the seed points in meter. All points need to lay within the box. weights : numpy.ndarray of shape (seeds.shape[0]) weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation. periodic : Boolean, optional perform a periodic tessellation. Defaults to True. """ if periodic: weights_p = np.tile(weights,27).flatten(order='F') # Laguerre weights (1,2,3,1,2,3,...,1,2,3) seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.]))) seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.]))) seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]]))) coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3,order='F') else: weights_p = weights.flatten() seeds_p = seeds coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F') pool = multiprocessing.Pool(processes = int(Environment().options['DAMASK_NUM_THREADS'])) result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords]) pool.close() pool.join() microstructure = np.array(result.get()) if periodic: microstructure = microstructure.reshape(grid*3,order='F') microstructure = microstructure[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0] else: microstructure = microstructure.reshape(grid,order='F') #comments = 'geom.py:from_Laguerre_tessellation v{}'.format(version) return Geom(microstructure+1,size,homogenization=1) @staticmethod def from_Voronoi_tessellation(grid,size,seeds,periodic=True): """ Generate geometry from Voronoi tessellation. Parameters ---------- grid : numpy.ndarray of shape (3) number of grid points in x,y,z direction. size : list or numpy.ndarray of shape (3) physical size of the microstructure in meter. seeds : numpy.ndarray of shape (:,3) position of the seed points in meter. All points need to lay within the box. periodic : Boolean, optional perform a periodic tessellation. Defaults to True. """ coords = grid_filters.cell_coord0(grid,size).reshape(-1,3,order='F') KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds) devNull,microstructure = KDTree.query(coords) #comments = 'geom.py:from_Voronoi_tessellation v{}'.format(version) return Geom(microstructure.reshape(grid,order='F')+1,size,homogenization=1) def to_file(self,fname,pack=None): """ Writes a geom file. Parameters ---------- fname : str or file handle geometry file to write. pack : bool, optional compress geometry with 'x of y' and 'a to b'. """ header = self.get_header() grid = self.get_grid() if pack is None: plain = grid.prod()/np.unique(self.microstructure).size < 250 else: plain = not pack if plain: format_string = '%g' if self.microstructure.dtype in np.sctypes['float'] else \ '%{}i'.format(1+int(np.floor(np.log10(np.nanmax(self.microstructure))))) np.savetxt(fname, self.microstructure.reshape([grid[0],np.prod(grid[1:])],order='F').T, header='\n'.join(header), fmt=format_string, comments='') else: try: f = open(fname,'w') except TypeError: f = fname compressType = None former = start = -1 reps = 0 for current in self.microstructure.flatten('F'): if abs(current - former) == 1 and (start - current) == reps*(former - current): compressType = 'to' reps += 1 elif current == former and start == former: compressType = 'of' reps += 1 else: if compressType is None: f.write('\n'.join(self.get_header())+'\n') elif compressType == '.': f.write('{}\n'.format(former)) elif compressType == 'to': f.write('{} to {}\n'.format(start,former)) elif compressType == 'of': f.write('{} of {}\n'.format(reps,former)) compressType = '.' start = current reps = 1 former = current if compressType == '.': f.write('{}\n'.format(former)) elif compressType == 'to': f.write('{} to {}\n'.format(start,former)) elif compressType == 'of': f.write('{} of {}\n'.format(reps,former)) def to_vtk(self,fname=None): """ Generates vtk file. Parameters ---------- fname : str, optional vtk file to write. If no file is given, a string is returned. """ v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin) v.add(self.microstructure.flatten(order='F'),'microstructure') if fname: v.write(fname) else: sys.stdout.write(v.__repr__()) def show(self): """Show raw content (as in file).""" f=StringIO() self.to_file(f) f.seek(0) return ''.join(f.readlines()) def mirror(self,directions,reflect=False): """ Mirror microstructure along given directions. Parameters ---------- directions : iterable containing str direction(s) along which the microstructure is mirrored. Valid entries are 'x', 'y', 'z'. reflect : bool, optional reflect (include) outermost layers. """ valid = {'x','y','z'} if not all(isinstance(d, str) for d in directions): raise TypeError('Directions are not of type str.') elif not set(directions).issubset(valid): raise ValueError('Invalid direction specified {}'.format(set(directions).difference(valid))) limits = [None,None] if reflect else [-2,0] ms = self.get_microstructure() if 'z' in directions: ms = np.concatenate([ms,ms[:,:,limits[0]:limits[1]:-1]],2) if 'y' in directions: ms = np.concatenate([ms,ms[:,limits[0]:limits[1]:-1,:]],1) if 'x' in directions: ms = np.concatenate([ms,ms[limits[0]:limits[1]:-1,:,:]],0) #self.add_comments('geom.py:mirror v{}'.format(version) return self.update(ms,rescale=True) def scale(self,grid): """ Scale microstructure to new grid. Parameters ---------- grid : iterable of int new grid dimension """ #self.add_comments('geom.py:scale v{}'.format(version) return self.update( ndimage.interpolation.zoom( self.microstructure, grid/self.get_grid(), output=self.microstructure.dtype, order=0, mode='nearest', prefilter=False ) ) def clean(self,stencil=3): """ Smooth microstructure by selecting most frequent index within given stencil at each location. Parameters ---------- stencil : int, optional size of smoothing stencil. """ def mostFrequent(arr): unique, inverse = np.unique(arr, return_inverse=True) return unique[np.argmax(np.bincount(inverse))] #self.add_comments('geom.py:clean v{}'.format(version) return self.update(ndimage.filters.generic_filter( self.microstructure, mostFrequent, size=(stencil,)*3 ).astype(self.microstructure.dtype) ) def renumber(self): """Renumber sorted microstructure indices to 1,...,N.""" renumbered = np.empty(self.get_grid(),dtype=self.microstructure.dtype) for i, oldID in enumerate(np.unique(self.microstructure)): renumbered = np.where(self.microstructure == oldID, i+1, renumbered) #self.add_comments('geom.py:renumber v{}'.format(version) return self.update(renumbered)