!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating kinematics resulting from thermal expansion !> @details to be done !-------------------------------------------------------------------------------------------------- submodule(phase:eigen) thermalexpansion integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance type :: tParameters real(pReal) :: & T_ref real(pReal), dimension(3,3,3) :: & A = 0.0_pReal end type tParameters type(tParameters), dimension(:), allocatable :: param contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function thermalexpansion_init(kinematics_length) result(myKinematics) integer, intent(in) :: kinematics_length logical, dimension(:,:), allocatable :: myKinematics integer :: Ninstances,p,i,k real(pReal), dimension(:), allocatable :: temp class(tNode), pointer :: & phases, & phase, & kinematics, & kinematic_type print'(/,a)', ' <<<+- phase:mechanical:eigen:thermalexpansion init -+>>>' myKinematics = kinematics_active('thermal_expansion',kinematics_length) Ninstances = count(myKinematics) print'(a,i2)', ' # instances: ',Ninstances; flush(IO_STDOUT) if(Ninstances == 0) return phases => config_material%get('phase') allocate(param(Ninstances)) allocate(kinematics_thermal_expansion_instance(phases%length), source=0) do p = 1, phases%length if(any(myKinematics(:,p))) kinematics_thermal_expansion_instance(p) = count(myKinematics(:,1:p)) phase => phases%get(p) if(count(myKinematics(:,p)) == 0) cycle kinematics => phase%get('kinematics') do k = 1, kinematics%length if(myKinematics(k,p)) then associate(prm => param(kinematics_thermal_expansion_instance(p))) kinematic_type => kinematics%get(k) prm%T_ref = kinematic_type%get_asFloat('T_ref', defaultVal=0.0_pReal) ! read up to three parameters (constant, linear, quadratic with T) temp = kinematic_type%get_asFloats('A_11') prm%A(1,1,1:size(temp)) = temp temp = kinematic_type%get_asFloats('A_22',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp)) prm%A(2,2,1:size(temp)) = temp temp = kinematic_type%get_asFloats('A_33',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp)) prm%A(3,3,1:size(temp)) = temp do i=1, size(prm%A,3) prm%A(1:3,1:3,i) = lattice_applyLatticeSymmetry33(prm%A(1:3,1:3,i),& phase%get_asString('lattice')) enddo end associate endif enddo enddo end function thermalexpansion_init !-------------------------------------------------------------------------------------------------- !> @brief constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- module subroutine thermalexpansion_LiAndItsTangent(Li, dLi_dTstar, ph,me) integer, intent(in) :: ph, me real(pReal), intent(out), dimension(3,3) :: & Li !< thermal velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero) real(pReal) :: T, dot_T T = thermal_T(ph,me) dot_T = thermal_dot_T(ph,me) associate(prm => param(kinematics_thermal_expansion_instance(ph))) Li = dot_T * ( & prm%A(1:3,1:3,1)*(T - prm%T_ref)**0 & ! constant coefficient + prm%A(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient + prm%A(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient ) / & (1.0_pReal & + prm%A(1:3,1:3,1)*(T - prm%T_ref)**1 / 1. & + prm%A(1:3,1:3,2)*(T - prm%T_ref)**2 / 2. & + prm%A(1:3,1:3,3)*(T - prm%T_ref)**3 / 3. & ) end associate dLi_dTstar = 0.0_pReal end subroutine thermalexpansion_LiAndItsTangent end submodule thermalexpansion