! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## ! $Id$ !***************************************************** !* Module: HOMOGENIZATION_RGC * !***************************************************** !* contains: * !***************************************************** ! [rgc] ! type rgc ! Ngrains p x q x r (cluster) ! (output) Ngrains MODULE homogenization_RGC !*** Include other modules *** use prec, only: pReal,pInt implicit none character (len=*), parameter :: homogenization_RGC_label = 'rgc' integer(pInt), dimension(:), allocatable :: homogenization_RGC_sizeState, & homogenization_RGC_sizePostResults integer(pInt), dimension(:,:), allocatable,target :: homogenization_RGC_sizePostResult integer(pInt), dimension(:,:), allocatable :: homogenization_RGC_Ngrains real(pReal), dimension(:,:), allocatable :: homogenization_RGC_dAlpha, & homogenization_RGC_angles real(pReal), dimension(:,:,:,:), allocatable :: homogenization_RGC_orientation real(pReal), dimension(:), allocatable :: homogenization_RGC_xiAlpha, & homogenization_RGC_ciAlpha character(len=64), dimension(:,:), allocatable,target :: homogenization_RGC_output ! name of each post result output CONTAINS !**************************************** !* - homogenization_RGC_init !* - homogenization_RGC_stateInit !* - homogenization_RGC_deformationPartition !* - homogenization_RGC_stateUpdate !* - homogenization_RGC_averageStressAndItsTangent !* - homogenization_RGC_postResults !**************************************** !************************************** !* Module initialization * !************************************** subroutine homogenization_RGC_init(& myFile & ! file pointer to material configuration ) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: debug_level, & debug_homogenization, & debug_levelBasic, & debug_levelExtensive use math, only: math_Mandel3333to66,& math_Voigt66to3333, & math_I3, & math_sampleRandomOri,& math_EulerToR,& INRAD use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips,FE_geomtype use IO use material implicit none integer(pInt), intent(in) :: myFile integer(pInt), parameter :: maxNchunks = 4_pInt integer(pInt), dimension(1_pInt+2_pInt*maxNchunks) :: positions integer(pInt) section, maxNinstance, i,j,e, output, mySize, myInstance character(len=64) tag character(len=1024) :: line = '' ! to start initialized write(6,*) write(6,*) '<<<+- homogenization_',trim(homogenization_RGC_label),' init -+>>>' write(6,*) '$Id$' #include "compilation_info.f90" maxNinstance = int(count(homogenization_type == homogenization_RGC_label),pInt) if (maxNinstance == 0) return allocate(homogenization_RGC_sizeState(maxNinstance)); homogenization_RGC_sizeState = 0_pInt allocate(homogenization_RGC_sizePostResults(maxNinstance)); homogenization_RGC_sizePostResults = 0_pInt allocate(homogenization_RGC_Ngrains(3,maxNinstance)); homogenization_RGC_Ngrains = 0_pInt allocate(homogenization_RGC_ciAlpha(maxNinstance)); homogenization_RGC_ciAlpha = 0.0_pReal allocate(homogenization_RGC_xiAlpha(maxNinstance)); homogenization_RGC_xiAlpha = 0.0_pReal allocate(homogenization_RGC_dAlpha(3,maxNinstance)); homogenization_RGC_dAlpha = 0.0_pReal allocate(homogenization_RGC_angles(3,maxNinstance)); homogenization_RGC_angles = 400.0_pReal allocate(homogenization_RGC_output(maxval(homogenization_Noutput),maxNinstance)); homogenization_RGC_output = '' allocate(homogenization_RGC_sizePostResult(maxval(homogenization_Noutput),maxNinstance)) homogenization_RGC_sizePostResult = 0_pInt allocate(homogenization_RGC_orientation(3,3,mesh_maxNips,mesh_NcpElems)) forall (i = 1_pInt:mesh_maxNips,e = 1_pInt:mesh_NcpElems) homogenization_RGC_orientation(:,:,i,e) = math_I3 end forall rewind(myFile) line = '' section = 0_pInt do while (IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization) ! wind forward to read(myFile,'(a1024)',END=100) line enddo do ! read thru sections of phase part read(myFile,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt output = 0_pInt ! reset output counter endif if (section > 0_pInt .and. homogenization_type(section) == homogenization_RGC_label) then ! one of my sections i = homogenization_typeInstance(section) ! which instance of my type is present homogenization positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('(output)') output = output + 1_pInt homogenization_RGC_output(output,i) = IO_lc(IO_stringValue(line,positions,2_pInt)) case ('clustersize') homogenization_RGC_Ngrains(1,i) = IO_intValue(line,positions,2_pInt) homogenization_RGC_Ngrains(2,i) = IO_intValue(line,positions,3_pInt) homogenization_RGC_Ngrains(3,i) = IO_intValue(line,positions,4_pInt) case ('scalingparameter') homogenization_RGC_xiAlpha(i) = IO_floatValue(line,positions,2_pInt) case ('overproportionality') homogenization_RGC_ciAlpha(i) = IO_floatValue(line,positions,2_pInt) case ('grainsize') homogenization_RGC_dAlpha(1,i) = IO_floatValue(line,positions,2_pInt) homogenization_RGC_dAlpha(2,i) = IO_floatValue(line,positions,3_pInt) homogenization_RGC_dAlpha(3,i) = IO_floatValue(line,positions,4_pInt) case ('clusterorientation') homogenization_RGC_angles(1,i) = IO_floatValue(line,positions,2_pInt) homogenization_RGC_angles(2,i) = IO_floatValue(line,positions,3_pInt) homogenization_RGC_angles(3,i) = IO_floatValue(line,positions,4_pInt) end select endif enddo !*** assigning cluster orientations do e = 1_pInt,mesh_NcpElems if (homogenization_type(mesh_element(3,e)) == homogenization_RGC_label) then myInstance = homogenization_typeInstance(mesh_element(3,e)) if (all (homogenization_RGC_angles(:,myInstance) >= 399.9_pReal)) then homogenization_RGC_orientation(:,:,1,e) = math_EulerToR(math_sampleRandomOri()) do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) if (microstructure_elemhomo(mesh_element(4,e))) then homogenization_RGC_orientation(:,:,i,e) = homogenization_RGC_orientation(:,:,1,e) else homogenization_RGC_orientation(:,:,i,e) = math_EulerToR(math_sampleRandomOri()) endif enddo else do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) homogenization_RGC_orientation(:,:,i,e) = math_EulerToR(homogenization_RGC_angles(:,myInstance)*inRad) enddo endif endif enddo 100 if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) do i = 1_pInt,maxNinstance write(6,'(a15,1x,i4)') 'instance: ', i write(6,*) write(6,'(a25,3(1x,i8))') 'cluster size: ',(homogenization_RGC_Ngrains(j,i),j=1_pInt,3_pInt) write(6,'(a25,1x,e10.3)') 'scaling parameter: ', homogenization_RGC_xiAlpha(i) write(6,'(a25,1x,e10.3)') 'over-proportionality: ', homogenization_RGC_ciAlpha(i) write(6,'(a25,3(1x,e10.3))') 'grain size: ',(homogenization_RGC_dAlpha(j,i),j=1_pInt,3_pInt) write(6,'(a25,3(1x,e10.3))') 'cluster orientation: ',(homogenization_RGC_angles(j,i),j=1_pInt,3_pInt) enddo !$OMP END CRITICAL (write2out) endif do i = 1_pInt,maxNinstance do j = 1_pInt,maxval(homogenization_Noutput) select case(homogenization_RGC_output(j,i)) case('constitutivework') mySize = 1_pInt case('magnitudemismatch') mySize = 3_pInt case('penaltyenergy') mySize = 1_pInt case('volumediscrepancy') mySize = 1_pInt case('averagerelaxrate') mySize = 1_pInt case('maximumrelaxrate') mySize = 1_pInt case default mySize = 0_pInt end select if (mySize > 0_pInt) then ! any meaningful output found homogenization_RGC_sizePostResult(j,i) = mySize homogenization_RGC_sizePostResults(i) = & homogenization_RGC_sizePostResults(i) + mySize endif enddo homogenization_RGC_sizeState(i) & = 3_pInt*(homogenization_RGC_Ngrains(1,i)-1_pInt)*homogenization_RGC_Ngrains(2,i)*homogenization_RGC_Ngrains(3,i) & + 3_pInt*homogenization_RGC_Ngrains(1,i)*(homogenization_RGC_Ngrains(2,i)-1_pInt)*homogenization_RGC_Ngrains(3,i) & + 3_pInt*homogenization_RGC_Ngrains(1,i)*homogenization_RGC_Ngrains(2,i)*(homogenization_RGC_Ngrains(3,i)-1_pInt) & + 8_pInt ! (1) Average constitutive work, (2-4) Overall mismatch, (5) Average penalty energy, ! (6) Volume discrepancy, (7) Avg relaxation rate component, (8) Max relaxation rate component enddo endsubroutine !********************************************************************* !* initial homogenization state * !********************************************************************* function homogenization_RGC_stateInit(myInstance) implicit none !* Definition of variables integer(pInt), intent(in) :: myInstance real(pReal), dimension(homogenization_RGC_sizeState(myInstance)) :: homogenization_RGC_stateInit !* Open a debugging file ! open(1978,file='homogenization_RGC_debugging.out',status='unknown') homogenization_RGC_stateInit = 0.0_pReal endfunction !******************************************************************** ! partition material point def grad onto constituents !******************************************************************** subroutine homogenization_RGC_partitionDeformation(& F, & ! partioned def grad per grain ! F0, & ! initial partioned def grad per grain avgF, & ! my average def grad state, & ! my state ip, & ! my integration point el & ! my element ) use prec, only: p_vec use debug, only: debug_level, & debug_homogenization, & debug_levelExtensive use mesh, only: mesh_element use material, only: homogenization_maxNgrains,homogenization_Ngrains,homogenization_typeInstance use FEsolving, only: theInc,cycleCounter implicit none !* Definition of variables real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: F0 real(pReal), dimension (3,3), intent(in) :: avgF type(p_vec), intent(in) :: state integer(pInt), intent(in) :: ip,el ! real(pReal), dimension (3) :: aVect,nVect integer(pInt), dimension (4) :: intFace integer(pInt), dimension (3) :: iGrain3 integer(pInt) homID, iGrain,iFace,i,j ! integer(pInt), parameter :: nFace = 6_pInt !* Debugging the overall deformation gradient if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a,i3,a,i3,a)')'========== Increment: ',theInc,' Cycle: ',cycleCounter,' ==========' write(6,'(1x,a32)')'Overall deformation gradient: ' do i = 1_pInt,3_pInt write(6,'(1x,3(e15.8,1x))')(avgF(i,j), j = 1_pInt,3_pInt) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif !* Compute the deformation gradient of individual grains due to relaxations homID = homogenization_typeInstance(mesh_element(3,el)) F = 0.0_pReal do iGrain = 1_pInt,homogenization_Ngrains(mesh_element(3,el)) iGrain3 = homogenization_RGC_grain1to3(iGrain,homID) do iFace = 1_pInt,nFace intFace = homogenization_RGC_getInterface(iFace,iGrain3) ! identifying 6 interfaces of each grain aVect = homogenization_RGC_relaxationVector(intFace,state,homID)! get the relaxation vectors for each interface from global relaxation vector array nVect = homogenization_RGC_interfaceNormal(intFace,ip,el) ! get the normal of each interface forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) & F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! calculating deformation relaxations due to interface relaxation enddo F(:,:,iGrain) = F(:,:,iGrain) + avgF(:,:) ! resulting relaxed deformation gradient !* Debugging the grain deformation gradients if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a32,1x,i3)')'Deformation gradient of grain: ',iGrain do i = 1_pInt,3_pInt write(6,'(1x,3(e15.8,1x))')(F(i,j,iGrain), j = 1_pInt,3_pInt) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif enddo endsubroutine !******************************************************************** ! update the internal state of the homogenization scheme ! and tell whether "done" and "happy" with result !******************************************************************** function homogenization_RGC_updateState(& state, & ! my state state0, & ! my state at the beginning of increment ! P, & ! array of current grain stresses F, & ! array of current grain deformation gradients F0, & ! array of initial grain deformation gradients avgF, & ! average deformation gradient dt, & ! time increment dPdF, & ! array of current grain stiffnesses ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use debug, only: debug_level, & debug_homogenization,& debug_levelExtensive, & debug_e, & debug_i use math, only: math_invert use mesh, only: mesh_element use material, only: homogenization_maxNgrains,homogenization_typeInstance, & homogenization_Ngrains use numerics, only: absTol_RGC,relTol_RGC,absMax_RGC,relMax_RGC,pPert_RGC, & maxdRelax_RGC,viscPower_RGC,viscModus_RGC,refRelaxRate_RGC implicit none !* Definition of variables type(p_vec), intent(inout) :: state type(p_vec), intent(in) :: state0 real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P,F,F0 real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF real(pReal), dimension (3,3), intent(in) :: avgF real(pReal), intent(in) :: dt integer(pInt), intent(in) :: ip,el ! logical, dimension(2) :: homogenization_RGC_updateState integer(pInt), dimension (4) :: intFaceN,intFaceP,faceID integer(pInt), dimension (3) :: nGDim,iGr3N,iGr3P,stresLoc integer(pInt), dimension (2) :: residLoc integer(pInt) homID,iNum,i,j,nIntFaceTot,iGrN,iGrP,iMun,iFace,k,l,ipert,iGrain,nGrain real(pReal), dimension (3,3,homogenization_maxNgrains) :: R,pF,pR,D,pD real(pReal), dimension (3,homogenization_maxNgrains) :: NN,pNN real(pReal), dimension (3) :: normP,normN,mornP,mornN real(pReal) residMax,stresMax,constitutiveWork,penaltyEnergy,volDiscrep logical error ! integer(pInt), parameter :: nFace = 6_pInt ! real(pReal), dimension(:,:), allocatable :: tract,jmatrix,jnverse,smatrix,pmatrix,rmatrix real(pReal), dimension(:), allocatable :: resid,relax,p_relax,p_resid,drelax !* ------------------------------------------------------------------------------------------------------------- !*** Initialization of RGC update state calculation !* Get the dimension of the cluster (grains and interfaces) homID = homogenization_typeInstance(mesh_element(3,el)) nGDim = homogenization_RGC_Ngrains(:,homID) nGrain = homogenization_Ngrains(mesh_element(3,el)) nIntFaceTot = (nGDim(1)-1_pInt)*nGDim(2)*nGDim(3) + nGDim(1)*(nGDim(2)-1_pInt)*nGDim(3) & + nGDim(1)*nGDim(2)*(nGDim(3)-1_pInt) !* Allocate the size of the global relaxation arrays/jacobian matrices depending on the size of the cluster allocate(resid(3_pInt*nIntFaceTot)); resid = 0.0_pReal allocate(tract(nIntFaceTot,3)); tract = 0.0_pReal allocate(relax(3_pInt*nIntFaceTot)); relax = state%p(1:3_pInt*nIntFaceTot) allocate(drelax(3_pInt*nIntFaceTot)) drelax = state%p(1:3_pInt*nIntFaceTot) - state0%p(1:3_pInt*nIntFaceTot) !* Debugging the obtained state if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Obtained state: ' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,2(e15.8,1x))')state%p(i) enddo write(6,*)' ' !$OMP END CRITICAL (write2out) endif !* Computing interface mismatch and stress penalty tensor for all interfaces of all grains call homogenization_RGC_stressPenalty(R,NN,avgF,F,ip,el,homID) !* Calculating volume discrepancy and stress penalty related to overall volume discrepancy call homogenization_RGC_volumePenalty(D,volDiscrep,F,avgF,ip,el,homID) !* Debugging the mismatch, stress and penalties of grains if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) do iGrain = 1_pInt,nGrain write(6,'(1x,a30,1x,i3,1x,a4,3(1x,e15.8))')'Mismatch magnitude of grain(',iGrain,') :',NN(1,iGrain),NN(2,iGrain),NN(3,iGrain) write(6,*)' ' write(6,'(1x,a30,1x,i3)')'Stress and penalties of grain: ',iGrain do i = 1_pInt,3_pInt write(6,'(1x,3(e15.8,1x),1x,3(e15.8,1x),1x,3(e15.8,1x))')(P(i,j,iGrain), j = 1_pInt,3_pInt), & (R(i,j,iGrain), j = 1_pInt,3_pInt), & (D(i,j,iGrain), j = 1_pInt,3_pInt) enddo write(6,*)' ' enddo !$OMP END CRITICAL (write2out) endif !* End of initialization !* ------------------------------------------------------------------------------------------------------------- !*** Computing the residual stress from the balance of traction at all (interior) interfaces do iNum = 1_pInt,nIntFaceTot faceID = homogenization_RGC_interface1to4(iNum,homID) ! identifying the interface ID in local coordinate system (4-dimensional index) !* Identify the left/bottom/back grain (-|N) iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index) iGrN = homogenization_RGC_grain3to1(iGr3N,homID) ! translate the local grain ID into global coordinate system (1-dimensional index) intFaceN = homogenization_RGC_getInterface(2_pInt*faceID(1),iGr3N) normN = homogenization_RGC_interfaceNormal(intFaceN,ip,el) ! get the interface normal !* Identify the right/up/front grain (+|P) iGr3P = iGr3N iGr3P(faceID(1)) = iGr3N(faceID(1))+1_pInt ! identifying the grain ID in local coordinate system (3-dimensional index) iGrP = homogenization_RGC_grain3to1(iGr3P,homID) ! translate the local grain ID into global coordinate system (1-dimensional index) intFaceP = homogenization_RGC_getInterface(2_pInt*faceID(1)-1_pInt,iGr3P) normP = homogenization_RGC_interfaceNormal(intFaceP,ip,el) ! get the interface normal !* Compute the residual of traction at the interface (in local system, 4-dimensional index) do i = 1_pInt,3_pInt tract(iNum,i) = sign(viscModus_RGC*(abs(drelax(i+3*(iNum-1_pInt)))/(refRelaxRate_RGC*dt))**viscPower_RGC, & drelax(i+3*(iNum-1_pInt))) ! contribution from the relaxation viscosity do j = 1_pInt,3_pInt tract(iNum,i) = tract(iNum,i) + (P(i,j,iGrP) + R(i,j,iGrP) + D(i,j,iGrP))*normP(j) & + (P(i,j,iGrN) + R(i,j,iGrN) + D(i,j,iGrN))*normN(j) ! contribution from material stress P, mismatch penalty R, and volume penalty D ! projected into the interface resid(i+3_pInt*(iNum-1_pInt)) = tract(iNum,i) ! translate the local residual into global 1-dimensional residual array enddo enddo !* Debugging the residual stress if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30,1x,i3)')'Traction at interface: ',iNum write(6,'(1x,3(e15.8,1x))')(tract(iNum,j), j = 1_pInt,3_pInt) write(6,*)' ' !$OMP END CRITICAL (write2out) endif enddo !* End of residual stress calculation !* ------------------------------------------------------------------------------------------------------------- !*** Convergence check for stress residual stresMax = maxval(abs(P)) ! get the maximum of first Piola-Kirchhoff (material) stress stresLoc = int(maxloc(abs(P)),pInt) ! get the location of the maximum stress residMax = maxval(abs(tract)) ! get the maximum of the residual residLoc = int(maxloc(abs(tract)),pInt) ! get the position of the maximum residual !* Debugging the convergent criteria if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt & .and. debug_e == el .and. debug_i == ip) then !$OMP CRITICAL (write2out) write(6,'(1x,a)')' ' write(6,'(1x,a,1x,i2,1x,i4)')'RGC residual check ...',ip,el write(6,'(1x,a15,1x,e15.8,1x,a7,i3,1x,a12,i2,i2)')'Max stress: ',stresMax, & '@ grain',stresLoc(3),'in component',stresLoc(1),stresLoc(2) write(6,'(1x,a15,1x,e15.8,1x,a7,i3,1x,a12,i2)')'Max residual: ',residMax, & '@ iface',residLoc(1),'in direction',residLoc(2) flush(6) !$OMP END CRITICAL (write2out) endif homogenization_RGC_updateState = .false. !* If convergence reached => done and happy if (residMax < relTol_RGC*stresMax .or. residMax < absTol_RGC) then homogenization_RGC_updateState = .true. if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt & .and. debug_e == el .and. debug_i == ip) then !$OMP CRITICAL (write2out) write(6,'(1x,a55)')'... done and happy' write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif ! write(6,'(1x,a,1x,i3,1x,a6,1x,i3,1x,a12)')'RGC_updateState: ip',ip,'| el',el,'converged :)' !* Then compute/update the state for postResult, i.e., ... !* ... all energy densities computed by time-integration constitutiveWork = state%p(3*nIntFaceTot+1) penaltyEnergy = state%p(3*nIntFaceTot+5) do iGrain = 1_pInt,homogenization_Ngrains(mesh_element(3,el)) ! time-integration loop for the calculating the work and energy do i = 1_pInt,3_pInt do j = 1_pInt,3_pInt constitutiveWork = constitutiveWork + P(i,j,iGrain)*(F(i,j,iGrain) - F0(i,j,iGrain))/real(nGrain,pReal) penaltyEnergy = penaltyEnergy + R(i,j,iGrain)*(F(i,j,iGrain) - F0(i,j,iGrain))/real(nGrain,pReal) enddo enddo enddo state%p(3*nIntFaceTot+1) = constitutiveWork ! the bulk mechanical/constitutive work state%p(3*nIntFaceTot+2) = sum(NN(1,:))/real(nGrain,pReal) ! the overall mismatch of all interface normal to e1-direction state%p(3*nIntFaceTot+3) = sum(NN(2,:))/real(nGrain,pReal) ! the overall mismatch of all interface normal to e2-direction state%p(3*nIntFaceTot+4) = sum(NN(3,:))/real(nGrain,pReal) ! the overall mismatch of all interface normal to e3-direction state%p(3*nIntFaceTot+5) = penaltyEnergy ! the overall penalty energy state%p(3*nIntFaceTot+6) = volDiscrep ! the overall volume discrepancy state%p(3*nIntFaceTot+7) = sum(abs(drelax))/dt/real(3_pInt*nIntFaceTot,pReal) ! the average rate of relaxation vectors state%p(3*nIntFaceTot+8) = maxval(abs(drelax))/dt ! the maximum rate of relaxation vectors if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt & .and. debug_e == el .and. debug_i == ip) then !$OMP CRITICAL (write2out) write(6,'(1x,a30,1x,e15.8)')'Constitutive work: ',constitutiveWork write(6,'(1x,a30,3(1x,e15.8))')'Magnitude mismatch: ',sum(NN(1,:))/real(nGrain,pReal), & sum(NN(2,:))/real(nGrain,pReal), & sum(NN(3,:))/real(nGrain,pReal) write(6,'(1x,a30,1x,e15.8)')'Penalty energy: ',penaltyEnergy write(6,'(1x,a30,1x,e15.8)')'Volume discrepancy: ',volDiscrep write(6,*)'' write(6,'(1x,a30,1x,e15.8)')'Maximum relaxation rate: ',maxval(abs(drelax))/dt write(6,'(1x,a30,1x,e15.8)')'Average relaxation rate: ',sum(abs(drelax))/dt/real(3_pInt*nIntFaceTot,pReal) write(6,*)'' flush(6) !$OMP END CRITICAL (write2out) endif deallocate(tract,resid,relax,drelax) return !* If residual blows-up => done but unhappy elseif (residMax > relMax_RGC*stresMax .or. residMax > absMax_RGC) then !* Try to restart when residual blows up exceeding maximum bound homogenization_RGC_updateState = (/.true.,.false./) ! with direct cut-back if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt & .and. debug_e == el .and. debug_i == ip) then !$OMP CRITICAL (write2out) write(6,'(1x,a55)')'... broken' write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif deallocate(tract,resid,relax,drelax) return !* Otherwise, proceed with computing the Jacobian and state update else if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt & .and. debug_e == el .and. debug_i == ip) then !$OMP CRITICAL (write2out) write(6,'(1x,a55)')'... not yet done' write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif endif !*** End of convergence check for residual stress !* ------------------------------------------------------------------------------------------------------------- !*** Construct the global Jacobian matrix for updating the global relaxation vector array when convergence is not yet reached ... !* ... of the constitutive stress tangent, !* assembled from dPdF or material constitutive model "smatrix" allocate(smatrix(3*nIntFaceTot,3*nIntFaceTot)); smatrix = 0.0_pReal do iNum = 1_pInt,nIntFaceTot faceID = homogenization_RGC_interface1to4(iNum,homID) ! assembling of local dPdF into global Jacobian matrix !* Identify the left/bottom/back grain (-|N) iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate sytem iGrN = homogenization_RGC_grain3to1(iGr3N,homID) ! translate into global grain ID intFaceN = homogenization_RGC_getInterface(2_pInt*faceID(1),iGr3N) ! identifying the connecting interface in local coordinate system normN = homogenization_RGC_interfaceNormal(intFaceN,ip,el) ! get the interface normal do iFace = 1_pInt,nFace intFaceN = homogenization_RGC_getInterface(iFace,iGr3N) ! identifying all interfaces that influence relaxation of the above interface mornN = homogenization_RGC_interfaceNormal(intFaceN,ip,el) ! get normal of the interfaces iMun = homogenization_RGC_interface4to1(intFaceN,homID) ! translate the interfaces ID into local 4-dimensional index if (iMun .gt. 0) then ! get the corresponding tangent do i=1_pInt,3_pInt; do j=1_pInt,3_pInt; do k=1_pInt,3_pInt; do l=1_pInt,3_pInt smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) + dPdF(i,k,j,l,iGrN)*normN(k)*mornN(l) enddo;enddo;enddo;enddo ! projecting the material tangent dPdF into the interface ! to obtain the Jacobian matrix contribution of dPdF endif enddo !* Identify the right/up/front grain (+|P) iGr3P = iGr3N iGr3P(faceID(1)) = iGr3N(faceID(1))+1_pInt ! identifying the grain ID in local coordinate sytem iGrP = homogenization_RGC_grain3to1(iGr3P,homID) ! translate into global grain ID intFaceP = homogenization_RGC_getInterface(2_pInt*faceID(1)-1_pInt,iGr3P) ! identifying the connecting interface in local coordinate system normP = homogenization_RGC_interfaceNormal(intFaceP,ip,el) ! get the interface normal do iFace = 1_pInt,nFace intFaceP = homogenization_RGC_getInterface(iFace,iGr3P) ! identifying all interfaces that influence relaxation of the above interface mornP = homogenization_RGC_interfaceNormal(intFaceP,ip,el) ! get normal of the interfaces iMun = homogenization_RGC_interface4to1(intFaceP,homID) ! translate the interfaces ID into local 4-dimensional index if (iMun .gt. 0) then ! get the corresponding tangent do i=1_pInt,3_pInt; do j=1_pInt,3_pInt; do k=1_pInt,3_pInt; do l=1_pInt,3_pInt smatrix(3*(iNum-1)+i,3*(iMun-1)+j) = smatrix(3*(iNum-1)+i,3*(iMun-1)+j) + dPdF(i,k,j,l,iGrP)*normP(k)*mornP(l) enddo;enddo;enddo;enddo endif enddo enddo !* Debugging the global Jacobian matrix of stress tangent if (iand(debug_level(debug_homogenization),debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Jacobian matrix of stress' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,100(e11.4,1x))')(smatrix(i,j), j = 1_pInt,3_pInt*nIntFaceTot) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif !* ... of the stress penalty tangent (mismatch penalty and volume penalty, !* computed using numerical perturbation method) "pmatrix" allocate(pmatrix(3*nIntFaceTot,3*nIntFaceTot)); pmatrix = 0.0_pReal allocate(p_relax(3*nIntFaceTot)); p_relax = 0.0_pReal allocate(p_resid(3*nIntFaceTot)); p_resid = 0.0_pReal do ipert = 1_pInt,3_pInt*nIntFaceTot p_relax = relax p_relax(ipert) = relax(ipert) + pPert_RGC ! perturb the relaxation vector state%p(1:3*nIntFaceTot) = p_relax call homogenization_RGC_grainDeformation(pF,F0,avgF,state,ip,el) ! compute the grains deformation from perturbed state call homogenization_RGC_stressPenalty(pR,pNN,avgF,pF,ip,el,homID) ! compute stress penalty due to interface mismatch from perturbed state call homogenization_RGC_volumePenalty(pD,volDiscrep,pF,avgF,ip,el,homID)! compute stress penalty due to volume discrepancy from perturbed state !* Computing the global stress residual array from the perturbed state p_resid = 0.0_pReal do iNum = 1_pInt,nIntFaceTot faceID = homogenization_RGC_interface1to4(iNum,homID) ! identifying the interface ID in local coordinate system (4-dimensional index) !* Identify the left/bottom/back grain (-|N) iGr3N = faceID(2:4) ! identifying the grain ID in local coordinate system (3-dimensional index) iGrN = homogenization_RGC_grain3to1(iGr3N,homID) ! translate the local grain ID into global coordinate system (1-dimensional index) intFaceN = homogenization_RGC_getInterface(2_pInt*faceID(1),iGr3N) ! identifying the interface ID of the grain normN = homogenization_RGC_interfaceNormal(intFaceN,ip,el) ! get the corresponding interface normal !* Identify the right/up/front grain (+|P) iGr3P = iGr3N iGr3P(faceID(1)) = iGr3N(faceID(1))+1_pInt ! identifying the grain ID in local coordinate system (3-dimensional index) iGrP = homogenization_RGC_grain3to1(iGr3P,homID) ! translate the local grain ID into global coordinate system (1-dimensional index) intFaceP = homogenization_RGC_getInterface(2_pInt*faceID(1)-1_pInt,iGr3P) ! identifying the interface ID of the grain normP = homogenization_RGC_interfaceNormal(intFaceP,ip,el) ! get the corresponding normal !* Compute the residual stress (contribution of mismatch and volume penalties) from perturbed state at all interfaces do i = 1_pInt,3_pInt do j = 1_pInt,3_pInt p_resid(i+3*(iNum-1)) = p_resid(i+3*(iNum-1)) + (pR(i,j,iGrP) - R(i,j,iGrP))*normP(j) & + (pR(i,j,iGrN) - R(i,j,iGrN))*normN(j) & + (pD(i,j,iGrP) - D(i,j,iGrP))*normP(j) & + (pD(i,j,iGrN) - D(i,j,iGrN))*normN(j) enddo enddo enddo pmatrix(:,ipert) = p_resid/pPert_RGC enddo !* Debugging the global Jacobian matrix of penalty tangent if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Jacobian matrix of penalty' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,100(e11.4,1x))')(pmatrix(i,j), j = 1_pInt,3_pInt*nIntFaceTot) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif !* ... of the numerical viscosity traction "rmatrix" allocate(rmatrix(3*nIntFaceTot,3*nIntFaceTot)); rmatrix = 0.0_pReal forall (i=1_pInt:3_pInt*nIntFaceTot) & rmatrix(i,i) = viscModus_RGC*viscPower_RGC/(refRelaxRate_RGC*dt)* & (abs(drelax(i))/(refRelaxRate_RGC*dt))**(viscPower_RGC - 1.0_pReal) ! tangent due to numerical viscosity traction appears ! only in the main diagonal term !* Debugging the global Jacobian matrix of numerical viscosity tangent if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Jacobian matrix of penalty' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,100(e11.4,1x))')(rmatrix(i,j), j = 1_pInt,3_pInt*nIntFaceTot) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif !* The overall Jacobian matrix summarizing contributions of smatrix, pmatrix, rmatrix allocate(jmatrix(3*nIntFaceTot,3*nIntFaceTot)); jmatrix = smatrix + pmatrix + rmatrix if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Jacobian matrix (total)' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,100(e11.4,1x))')(jmatrix(i,j), j = 1_pInt,3_pInt*nIntFaceTot) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif !*** End of construction and assembly of Jacobian matrix !* ------------------------------------------------------------------------------------------------------------- !*** Computing the update of the state variable (relaxation vectors) using the Jacobian matrix allocate(jnverse(3_pInt*nIntFaceTot,3_pInt*nIntFaceTot)); jnverse = 0.0_pReal call math_invert(size(jmatrix,1),jmatrix,jnverse,error) ! Compute the inverse of the overall Jacobian matrix !* Debugging the inverse Jacobian matrix if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Jacobian inverse' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,100(e11.4,1x))')(jnverse(i,j), j = 1_pInt,3_pInt*nIntFaceTot) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif !* Calculate the state update (global relaxation vectors) for the next Newton-Raphson iteration drelax = 0.0_pReal do i = 1_pInt,3_pInt*nIntFaceTot do j = 1_pInt,3_pInt*nIntFaceTot drelax(i) = drelax(i) - jnverse(i,j)*resid(j) ! Calculate the correction for the state variable enddo enddo relax = relax + drelax ! Updateing the state variable for the next iteration state%p(1:3*nIntFaceTot) = relax if (any(abs(drelax(:)) > maxdRelax_RGC)) then ! Forcing cutback when the incremental change of relaxation vector becomes too large homogenization_RGC_updateState = (/.true.,.false./) !$OMP CRITICAL (write2out) write(6,'(1x,a,1x,i3,1x,a,1x,i3,1x,a)')'RGC_updateState: ip',ip,'| el',el,'enforces cutback' write(6,'(1x,a,1x,e15.8)')'due to large relaxation change =',maxval(abs(drelax)) flush(6) !$OMP END CRITICAL (write2out) endif !* Debugging the return state if (iand(debug_homogenization, debug_levelExtensive) > 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(1x,a30)')'Returned state: ' do i = 1_pInt,3_pInt*nIntFaceTot write(6,'(1x,2(e15.8,1x))')state%p(i) enddo write(6,*)' ' flush(6) !$OMP END CRITICAL (write2out) endif deallocate(tract,resid,jmatrix,jnverse,relax,drelax,pmatrix,smatrix,p_relax,p_resid) !*** End of calculation of state update endfunction !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** subroutine homogenization_RGC_averageStressAndItsTangent(& avgP, & ! average stress at material point dAvgPdAvgF, & ! average stiffness at material point ! P, & ! array of current grain stresses dPdF, & ! array of current grain stiffnesses ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use debug, only: debug_level, & debug_homogenization,& debug_levelExtensive use mesh, only: mesh_element use material, only: homogenization_maxNgrains,homogenization_Ngrains,homogenization_typeInstance use math, only: math_Plain3333to99 implicit none real(pReal), dimension (3,3), intent(out) :: avgP real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF real(pReal), dimension (9,9) :: dPdF99 integer(pInt), intent(in) :: ip,el ! integer(pInt) homID, i, j, Ngrains, iGrain homID = homogenization_typeInstance(mesh_element(3,el)) Ngrains = homogenization_Ngrains(mesh_element(3,el)) !* Debugging the grain tangent if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) do iGrain = 1_pInt,Ngrains dPdF99 = math_Plain3333to99(dPdF(1:3,1:3,1:3,1:3,iGrain)) write(6,'(1x,a30,1x,i3)')'Stress tangent of grain: ',iGrain do i = 1_pInt,9_pInt write(6,'(1x,(e15.8,1x))') (dPdF99(i,j), j = 1_pInt,9_pInt) enddo write(6,*)' ' enddo flush(6) !$OMP END CRITICAL (write2out) endif !* Computing the average first Piola-Kirchhoff stress P and the average tangent dPdF avgP = sum(P,3)/real(Ngrains,pReal) dAvgPdAvgF = sum(dPdF,5)/real(Ngrains,pReal) endsubroutine !******************************************************************** ! derive average stress and stiffness from constituent quantities !******************************************************************** pure function homogenization_RGC_averageTemperature(& Temperature, & ! temperature ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element use material, only: homogenization_maxNgrains, homogenization_Ngrains implicit none real(pReal), dimension (homogenization_maxNgrains), intent(in) :: Temperature integer(pInt), intent(in) :: ip,el real(pReal) homogenization_RGC_averageTemperature integer(pInt) :: Ngrains !* Computing the average temperature Ngrains = homogenization_Ngrains(mesh_element(3,el)) homogenization_RGC_averageTemperature = sum(Temperature(1:Ngrains))/real(Ngrains,pReal) endfunction !******************************************************************** ! return array of homogenization results for post file inclusion !******************************************************************** pure function homogenization_RGC_postResults(& state, & ! my state ip, & ! my integration point el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element use material, only: homogenization_typeInstance,homogenization_Noutput implicit none type(p_vec), intent(in) :: state integer(pInt), intent(in) :: ip,el ! integer(pInt) homID,o,c,nIntFaceTot real(pReal), dimension(homogenization_RGC_sizePostResults(homogenization_typeInstance(mesh_element(3,el)))) :: & homogenization_RGC_postResults homID = homogenization_typeInstance(mesh_element(3,el)) nIntFaceTot=(homogenization_RGC_Ngrains(1,homID)-1_pInt)*homogenization_RGC_Ngrains(2,homID)*homogenization_RGC_Ngrains(3,homID)& + homogenization_RGC_Ngrains(1,homID)*(homogenization_RGC_Ngrains(2,homID)-1_pInt)*homogenization_RGC_Ngrains(3,homID)& + homogenization_RGC_Ngrains(1,homID)*homogenization_RGC_Ngrains(2,homID)*(homogenization_RGC_Ngrains(3,homID)-1_pInt) c = 0_pInt homogenization_RGC_postResults = 0.0_pReal do o = 1_pInt,homogenization_Noutput(mesh_element(3,el)) select case(homogenization_RGC_output(o,homID)) case('constitutivework') homogenization_RGC_postResults(c+1) = state%p(3*nIntFaceTot+1) c = c + 1_pInt case('magnitudemismatch') homogenization_RGC_postResults(c+1) = state%p(3*nIntFaceTot+2) homogenization_RGC_postResults(c+2) = state%p(3*nIntFaceTot+3) homogenization_RGC_postResults(c+3) = state%p(3*nIntFaceTot+4) c = c + 3_pInt case('penaltyenergy') homogenization_RGC_postResults(c+1) = state%p(3*nIntFaceTot+5) c = c + 1_pInt case('volumediscrepancy') homogenization_RGC_postResults(c+1) = state%p(3*nIntFaceTot+6) c = c + 1_pInt case('averagerelaxrate') homogenization_RGC_postResults(c+1) = state%p(3*nIntFaceTot+7) c = c + 1_pInt case('maximumrelaxrate') homogenization_RGC_postResults(c+1) = state%p(3*nIntFaceTot+8) c = c + 1_pInt end select enddo endfunction !******************************************************************** ! subroutine to calculate stress-like penalty due to deformation mismatch !******************************************************************** subroutine homogenization_RGC_stressPenalty(& rPen, & ! stress-like penalty nMis, & ! total amount of mismatch ! avgF, & ! initial effective stretch tensor fDef, & ! deformation gradients ip, & ! integration point el, & ! element homID & ! homogenization ID ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element use constitutive, only: constitutive_homogenizedC use math, only: math_civita,math_invert33 use material, only: homogenization_maxNgrains,homogenization_Ngrains use numerics, only: xSmoo_RGC implicit none real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: rPen real(pReal), dimension (3,homogenization_maxNgrains), intent(out) :: nMis real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: fDef real(pReal), dimension (3,3), intent(in) :: avgF integer(pInt), intent(in) :: ip,el integer(pInt), dimension (4) :: intFace integer(pInt), dimension (3) :: iGrain3,iGNghb3,nGDim real(pReal), dimension (3,3) :: gDef,nDef real(pReal), dimension (3) :: nVect,surfCorr real(pReal), dimension (2) :: Gmoduli integer(pInt) homID,iGrain,iGNghb,iFace,i,j,k,l real(pReal) muGrain,muGNghb,nDefNorm,bgGrain,bgGNghb ! integer(pInt), parameter :: nFace = 6_pInt real(pReal), parameter :: nDefToler = 1.0e-10_pReal nGDim = homogenization_RGC_Ngrains(:,homID) rPen = 0.0_pReal nMis = 0.0_pReal !* Get the correction factor the modulus of penalty stress representing the evolution of area of the interfaces due to deformations surfCorr = homogenization_RGC_surfaceCorrection(avgF,ip,el) !* Debugging the surface correction factor ! if (ip == 1 .and. el == 1) then ! write(6,'(1x,a20,2(1x,i3))')'Correction factor: ',ip,el ! write(6,'(1x,3(e11.4,1x))')(surfCorr(i), i = 1,3) ! endif !* ------------------------------------------------------------------------------------------------------------- !*** Computing the mismatch and penalty stress tensor of all grains do iGrain = 1_pInt,homogenization_Ngrains(mesh_element(3,el)) Gmoduli = homogenization_RGC_equivalentModuli(iGrain,ip,el) muGrain = Gmoduli(1) ! collecting the equivalent shear modulus of grain bgGrain = Gmoduli(2) ! and the lengthh of Burgers vector iGrain3 = homogenization_RGC_grain1to3(iGrain,homID) ! get the grain ID in local 3-dimensional index (x,y,z)-position !* Looping over all six interfaces of each grain do iFace = 1_pInt,nFace intFace = homogenization_RGC_getInterface(iFace,iGrain3) ! get the 4-dimensional index of the interface in local numbering system of the grain nVect = homogenization_RGC_interfaceNormal(intFace,ip,el) ! get the interface normal iGNghb3 = iGrain3 ! identify the neighboring grain across the interface iGNghb3(abs(intFace(1))) = iGNghb3(abs(intFace(1))) + int(real(intFace(1),pReal)/real(abs(intFace(1)),pReal),pInt) if (iGNghb3(1) < 1) iGNghb3(1) = nGDim(1) ! with periodicity along e1 direction if (iGNghb3(1) > nGDim(1)) iGNghb3(1) = 1_pInt if (iGNghb3(2) < 1) iGNghb3(2) = nGDim(2) ! with periodicity along e2 direction if (iGNghb3(2) > nGDim(2)) iGNghb3(2) = 1_pInt if (iGNghb3(3) < 1) iGNghb3(3) = nGDim(3) ! with periodicity along e3 direction if (iGNghb3(3) > nGDim(3)) iGNghb3(3) = 1_pInt iGNghb = homogenization_RGC_grain3to1(iGNghb3,homID) ! get the ID of the neighboring grain Gmoduli = homogenization_RGC_equivalentModuli(iGNghb,ip,el) ! collecting the shear modulus and Burgers vector of the neighbor muGNghb = Gmoduli(1) bgGNghb = Gmoduli(2) gDef = 0.5_pReal*(fDef(:,:,iGNghb) - fDef(:,:,iGrain)) ! compute the difference/jump in deformation gradeint across the neighbor !* Compute the mismatch tensor of all interfaces nDefNorm = 0.0_pReal nDef = 0.0_pReal do i = 1_pInt,3_pInt do j = 1_pInt,3_pInt do k = 1_pInt,3_pInt do l = 1_pInt,3_pInt nDef(i,j) = nDef(i,j) - nVect(k)*gDef(i,l)*math_civita(j,k,l)! compute the interface mismatch tensor from the jump of deformation gradient enddo enddo nDefNorm = nDefNorm + nDef(i,j)*nDef(i,j) ! compute the norm of the mismatch tensor enddo enddo nDefNorm = max(nDefToler,sqrt(nDefNorm)) ! approximation to zero mismatch if mismatch is zero (singularity) nMis(abs(intFace(1)),iGrain) = nMis(abs(intFace(1)),iGrain) + nDefNorm ! total amount of mismatch experienced by the grain (at all six interfaces) !* Debugging the mismatch tensor ! if (ip == 1 .and. el == 1) then ! write(6,'(1x,a20,i2,1x,a20,1x,i3)')'Mismatch to face: ',intFace(1),'neighbor grain: ',iGNghb ! do i = 1,3 ! write(6,'(1x,3(e11.4,1x))')(nDef(i,j), j = 1,3) ! enddo ! write(6,'(1x,a20,e11.4))')'with magnitude: ',nDefNorm ! endif !* Compute the stress penalty of all interfaces do i = 1_pInt,3_pInt do j = 1_pInt,3_pInt do k = 1_pInt,3_pInt do l = 1_pInt,3_pInt rPen(i,j,iGrain) = rPen(i,j,iGrain) + 0.5_pReal*(muGrain*bgGrain + muGNghb*bgGNghb)*homogenization_RGC_xiAlpha(homID) & *surfCorr(abs(intFace(1)))/homogenization_RGC_dAlpha(abs(intFace(1)),homID) & *cosh(homogenization_RGC_ciAlpha(homID)*nDefNorm) & *0.5_pReal*nVect(l)*nDef(i,k)/nDefNorm*math_civita(k,l,j) & *tanh(nDefNorm/xSmoo_RGC) enddo enddo enddo enddo enddo !* Debugging the stress-like penalty ! if (ip == 1 .and. el == 1) then ! write(6,'(1x,a20,i2)')'Penalty of grain: ',iGrain ! do i = 1,3 ! write(6,'(1x,3(e11.4,1x))')(rPen(i,j,iGrain), j = 1,3) ! enddo ! endif enddo !*** End of mismatch and penalty stress tensor calculation endsubroutine !******************************************************************** ! subroutine to calculate stress-like penalty due to volume discrepancy !******************************************************************** subroutine homogenization_RGC_volumePenalty(& vPen, & ! stress-like penalty due to volume vDiscrep, & ! total volume discrepancy ! fDef, & ! deformation gradients fAvg, & ! overall deformation gradient ip, & ! integration point el, & ! element homID & ! homogenization ID ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element use math, only: math_det33,math_inv33 use material, only: homogenization_maxNgrains,homogenization_Ngrains use numerics, only: maxVolDiscr_RGC,volDiscrMod_RGC,volDiscrPow_RGC implicit none real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: vPen real(pReal), intent(out) :: vDiscrep real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: fDef real(pReal), dimension (3,3), intent(in) :: fAvg integer(pInt), intent(in) :: ip,el real(pReal), dimension (homogenization_maxNgrains) :: gVol integer(pInt) homID,iGrain,nGrain ! nGrain = homogenization_Ngrains(mesh_element(3,el)) !* Compute the volumes of grains and of cluster vDiscrep = math_det33(fAvg) ! compute the volume of the cluster do iGrain = 1_pInt,nGrain gVol(iGrain) = math_det33(fDef(:,:,iGrain)) ! compute the volume of individual grains vDiscrep = vDiscrep - gVol(iGrain)/real(nGrain,pReal) ! calculate the difference/dicrepancy between ! the volume of the cluster and the the total volume of grains enddo !* Calculate the stress and penalty due to volume discrepancy vPen = 0.0_pReal do iGrain = 1_pInt,nGrain vPen(:,:,iGrain) = -1.0_pReal/real(nGrain,pReal)*volDiscrMod_RGC*volDiscrPow_RGC/maxVolDiscr_RGC* & sign((abs(vDiscrep)/maxVolDiscr_RGC)**(volDiscrPow_RGC - 1.0),vDiscrep)* & gVol(iGrain)*transpose(math_inv33(fDef(:,:,iGrain))) !* Debugging the stress-like penalty of volume discrepancy ! if (ip == 1 .and. el == 1) then ! write(6,'(1x,a30,i2)')'Volume penalty of grain: ',iGrain ! do i = 1,3 ! write(6,'(1x,3(e11.4,1x))')(vPen(i,j,iGrain), j = 1,3) ! enddo ! endif enddo endsubroutine !******************************************************************** ! subroutine to compute the correction factor due to surface area evolution !******************************************************************** function homogenization_RGC_surfaceCorrection(& avgF, & ! average deformation gradient ip, & ! my IP el & ! my element ) use prec, only: pReal,pInt,p_vec use math, only: math_invert33,math_mul33x33 implicit none real(pReal), dimension(3,3), intent(in) :: avgF real(pReal), dimension(3) :: homogenization_RGC_surfaceCorrection integer(pInt), intent(in) :: ip,el real(pReal), dimension(3,3) :: invC,avgC real(pReal), dimension(3) :: nVect real(pReal) detF integer(pInt), dimension(4) :: intFace integer(pInt) i,j,iBase logical error !* Compute the correction factor accouted for surface evolution (area change) due to deformation avgC = 0.0_pReal avgC = math_mul33x33(transpose(avgF),avgF) invC = 0.0_pReal call math_invert33(avgC,invC,detF,error) homogenization_RGC_surfaceCorrection = 0.0_pReal do iBase = 1_pInt,3_pInt intFace = (/iBase,1_pInt,1_pInt,1_pInt/) nVect = homogenization_RGC_interfaceNormal(intFace,ip,el) ! get the normal of the interface do i = 1_pInt,3_pInt do j = 1_pInt,3_pInt homogenization_RGC_surfaceCorrection(iBase) = & ! compute the component of (the inverse of) the stretch in the direction of the normal homogenization_RGC_surfaceCorrection(iBase) + invC(i,j)*nVect(i)*nVect(j) enddo enddo homogenization_RGC_surfaceCorrection(iBase) = & ! get the surface correction factor (area contraction/enlargement) sqrt(homogenization_RGC_surfaceCorrection(iBase))*detF enddo endfunction !******************************************************************** ! subroutine to compute the equivalent shear and bulk moduli from the elasticity tensor !******************************************************************** function homogenization_RGC_equivalentModuli(& grainID, & ! grain ID ip, & ! IP number el & ! element number ) use prec, only: pReal,pInt,p_vec use constitutive, only: constitutive_homogenizedC,constitutive_averageBurgers implicit none integer(pInt), intent(in) :: grainID,ip,el real(pReal), dimension (6,6) :: elasTens real(pReal), dimension(2) :: homogenization_RGC_equivalentModuli real(pReal) cEquiv_11,cEquiv_12,cEquiv_44 elasTens = constitutive_homogenizedC(grainID,ip,el) !* Compute the equivalent shear modulus after Turterltaub and Suiker, JMPS (2005) cEquiv_11 = (elasTens(1,1) + elasTens(2,2) + elasTens(3,3))/3.0_pReal cEquiv_12 = (elasTens(1,2) + elasTens(2,3) + elasTens(3,1) + & elasTens(1,3) + elasTens(2,1) + elasTens(3,2))/6.0_pReal cEquiv_44 = (elasTens(4,4) + elasTens(5,5) + elasTens(6,6))/3.0_pReal homogenization_RGC_equivalentModuli(1) = 0.2_pReal*(cEquiv_11 - cEquiv_12) + 0.6_pReal*cEquiv_44 !* Obtain the length of Burgers vector homogenization_RGC_equivalentModuli(2) = constitutive_averageBurgers(grainID,ip,el) endfunction !******************************************************************** ! subroutine to collect relaxation vectors of an interface !******************************************************************** function homogenization_RGC_relaxationVector(& intFace, & ! set of interface ID in 4D array (normal and position) state, & ! set of global relaxation vectors homID & ! homogenization ID ) use prec, only: pReal,pInt,p_vec implicit none real(pReal), dimension (3) :: homogenization_RGC_relaxationVector integer(pInt), dimension (4), intent(in) :: intFace type(p_vec), intent(in) :: state integer(pInt), dimension (3) :: nGDim integer(pInt) iNum,homID !* Collect the interface relaxation vector from the global state array homogenization_RGC_relaxationVector = 0.0_pReal nGDim = homogenization_RGC_Ngrains(:,homID) iNum = homogenization_RGC_interface4to1(intFace,homID) ! identify the position of the interface in global state array if (iNum .gt. 0_pInt) homogenization_RGC_relaxationVector = state%p((3*iNum-2):(3*iNum)) ! get the corresponding entries endfunction !******************************************************************** ! subroutine to identify the normal of an interface !******************************************************************** function homogenization_RGC_interfaceNormal(& intFace, & ! interface ID in 4D array (normal and position) ip, & ! my IP el & ! my element ) use prec, only: pReal,pInt,p_vec use math, only: math_mul33x3 implicit none real(pReal), dimension (3) :: homogenization_RGC_interfaceNormal integer(pInt), dimension (4), intent(in) :: intFace integer(pInt), intent(in) :: ip,el integer(pInt) nPos !* Get the normal of the interface, identified from the value of intFace(1) homogenization_RGC_interfaceNormal = 0.0_pReal nPos = abs(intFace(1)) ! identify the position of the interface in global state array homogenization_RGC_interfaceNormal(nPos) = real(intFace(1)/abs(intFace(1)),pReal) ! get the normal vector w.r.t. cluster axis homogenization_RGC_interfaceNormal = & math_mul33x3(homogenization_RGC_orientation(:,:,ip,el),homogenization_RGC_interfaceNormal) ! map the normal vector into sample coordinate system (basis) ! if (ip == 1 .and. el == 1) then ! write(6,'(1x,a32,3(1x,i3))')'Interface normal: ',intFace(1) ! write(6,'(1x,3(e15.8,1x))')(nVect(i), i = 1,3) ! write(6,*)' ' ! flush(6) ! endif endfunction !******************************************************************** ! subroutine to collect six faces of a grain in 4D (normal and position) !******************************************************************** function homogenization_RGC_getInterface(& iFace, & ! face index (1..6) mapped like (-e1,-e2,-e3,+e1,+e2,+e3) or iDir = (-1,-2,-3,1,2,3) iGrain3 & ! grain ID in 3D array ) use prec, only: pReal,pInt,p_vec implicit none integer(pInt), dimension (4) :: homogenization_RGC_getInterface integer(pInt), dimension (3), intent(in) :: iGrain3 integer(pInt), intent(in) :: iFace integer(pInt) iDir !* Direction of interface normal iDir = (int(real(iFace-1_pInt,pReal)/2.0_pReal,pInt)+1_pInt)*(-1_pInt)**iFace homogenization_RGC_getInterface(1) = iDir !* Identify the interface position by the direction of its normal homogenization_RGC_getInterface(2:4) = iGrain3(:) if (iDir < 0_pInt) & ! to have a correlation with coordinate/position in real space homogenization_RGC_getInterface(1_pInt-iDir) = homogenization_RGC_getInterface(1_pInt-iDir)-1_pInt endfunction !******************************************************************** ! subroutine to map grain ID from in 1D (global array) to in 3D (local position) !******************************************************************** function homogenization_RGC_grain1to3(& grain1, & ! grain ID in 1D array homID & ! homogenization ID ) use prec, only: pInt,p_vec implicit none integer(pInt), dimension (3) :: homogenization_RGC_grain1to3 integer(pInt), intent(in) :: grain1,homID integer(pInt), dimension (3) :: nGDim !* Get the grain position nGDim = homogenization_RGC_Ngrains(:,homID) homogenization_RGC_grain1to3(3) = 1_pInt+(grain1-1_pInt)/(nGDim(1)*nGDim(2)) homogenization_RGC_grain1to3(2) = 1_pInt+mod((grain1-1_pInt)/nGDim(1),nGDim(2)) homogenization_RGC_grain1to3(1) = 1_pInt+mod((grain1-1_pInt),nGDim(1)) endfunction !******************************************************************** ! subroutine to map grain ID from in 3D (local position) to in 1D (global array) !******************************************************************** pure function homogenization_RGC_grain3to1(& grain3, & ! grain ID in 3D array (pos.x,pos.y,pos.z) homID & ! homogenization ID ) use prec, only: pInt,p_vec implicit none integer(pInt), dimension (3), intent(in) :: grain3 integer(pInt) :: homogenization_RGC_grain3to1 integer(pInt), dimension (3) :: nGDim integer(pInt), intent(in) :: homID !* Get the grain ID nGDim = homogenization_RGC_Ngrains(:,homID) homogenization_RGC_grain3to1 = grain3(1) + nGDim(1)*(grain3(2)-1_pInt) + nGDim(1)*nGDim(2)*(grain3(3)-1_pInt) endfunction !******************************************************************** ! subroutine to map interface ID from 4D (normal and local position) into 1D (global array) !******************************************************************** pure function homogenization_RGC_interface4to1(& iFace4D, & ! interface ID in 4D array (n.dir,pos.x,pos.y,pos.z) homID & ! homogenization ID ) use prec, only: pInt,p_vec implicit none integer(pInt), dimension (4), intent(in) :: iFace4D integer(pInt) :: homogenization_RGC_interface4to1 integer(pInt), dimension (3) :: nGDim,nIntFace integer(pInt), intent(in) :: homID nGDim = homogenization_RGC_Ngrains(:,homID) !* Compute the total number of interfaces, which ... nIntFace(1) = (nGDim(1)-1_pInt)*nGDim(2)*nGDim(3) ! ... normal //e1 nIntFace(2) = nGDim(1)*(nGDim(2)-1_pInt)*nGDim(3) ! ... normal //e2 nIntFace(3) = nGDim(1)*nGDim(2)*(nGDim(3)-1_pInt) ! ... normal //e3 !* Get the corresponding interface ID in 1D global array if (abs(iFace4D(1)) == 1_pInt) then ! ... interface with normal //e1 homogenization_RGC_interface4to1 = iFace4D(3) + nGDim(2)*(iFace4D(4)-1_pInt) & + nGDim(2)*nGDim(3)*(iFace4D(2)-1_pInt) if ((iFace4D(2) == 0_pInt) .or. (iFace4D(2) == nGDim(1))) homogenization_RGC_interface4to1 = 0_pInt elseif (abs(iFace4D(1)) == 2_pInt) then ! ... interface with normal //e2 homogenization_RGC_interface4to1 = iFace4D(4) + nGDim(3)*(iFace4D(2)-1_pInt) & + nGDim(3)*nGDim(1)*(iFace4D(3)-1_pInt) + nIntFace(1) if ((iFace4D(3) == 0_pInt) .or. (iFace4D(3) == nGDim(2))) homogenization_RGC_interface4to1 = 0_pInt elseif (abs(iFace4D(1)) == 3_pInt) then ! ... interface with normal //e3 homogenization_RGC_interface4to1 = iFace4D(2) + nGDim(1)*(iFace4D(3)-1_pInt) & + nGDim(1)*nGDim(2)*(iFace4D(4)-1_pInt) + nIntFace(1) + nIntFace(2) if ((iFace4D(4) == 0_pInt) .or. (iFace4D(4) == nGDim(3))) homogenization_RGC_interface4to1 = 0_pInt endif endfunction !******************************************************************** ! subroutine to map interface ID from 1D (global array) into 4D (normal and local position) !******************************************************************** function homogenization_RGC_interface1to4(& iFace1D, & ! interface ID in 1D array homID & ! homogenization ID ) use prec, only: pReal,pInt,p_vec implicit none integer(pInt), dimension (4) :: homogenization_RGC_interface1to4 integer(pInt), intent(in) :: iFace1D integer(pInt), dimension (3) :: nGDim,nIntFace integer(pInt), intent(in) :: homID nGDim = homogenization_RGC_Ngrains(:,homID) !* Compute the total number of interfaces, which ... nIntFace(1) = (nGDim(1)-1_pInt)*nGDim(2)*nGDim(3) ! ... normal //e1 nIntFace(2) = nGDim(1)*(nGDim(2)-1_pInt)*nGDim(3) ! ... normal //e2 nIntFace(3) = nGDim(1)*nGDim(2)*(nGDim(3)-1_pInt) ! ... normal //e3 !* Get the corresponding interface ID in 4D (normal and local position) if (iFace1D > 0 .and. iFace1D <= nIntFace(1)) then ! ... interface with normal //e1 homogenization_RGC_interface1to4(1) = 1_pInt homogenization_RGC_interface1to4(3) = mod((iFace1D-1_pInt),nGDim(2))+1_pInt homogenization_RGC_interface1to4(4) = mod(& int(& real(iFace1D-1_pInt,pReal)/& real(nGDim(2),pReal)& ,pInt)& ,nGDim(3))+1_pInt homogenization_RGC_interface1to4(2) = int(& real(iFace1D-1_pInt,pReal)/& real(nGDim(2),pReal)/& real(nGDim(3),pReal)& ,pInt)+1_pInt elseif (iFace1D > nIntFace(1) .and. iFace1D <= (nIntFace(2) + nIntFace(1))) then ! ... interface with normal //e2 homogenization_RGC_interface1to4(1) = 2_pInt homogenization_RGC_interface1to4(4) = mod((iFace1D-nIntFace(1)-1_pInt),nGDim(3))+1_pInt homogenization_RGC_interface1to4(2) = mod(& int(& real(iFace1D-nIntFace(1)-1_pInt,pReal)/& real(nGDim(3),pReal)& ,pInt)& ,nGDim(1))+1_pInt homogenization_RGC_interface1to4(3) = int(& real(iFace1D-nIntFace(1)-1_pInt,pReal)/& real(nGDim(3),pReal)/& real(nGDim(1),pReal)& ,pInt)+1_pInt elseif (iFace1D > nIntFace(2) + nIntFace(1) .and. iFace1D <= (nIntFace(3) + nIntFace(2) + nIntFace(1))) then ! ... interface with normal //e3 homogenization_RGC_interface1to4(1) = 3_pInt homogenization_RGC_interface1to4(2) = mod((iFace1D-nIntFace(2)-nIntFace(1)-1_pInt),nGDim(1))+1_pInt homogenization_RGC_interface1to4(3) = mod(& int(& real(iFace1D-nIntFace(2)-nIntFace(1)-1_pInt,pReal)/& real(nGDim(1),pReal)& ,pInt)& ,nGDim(2))+1_pInt homogenization_RGC_interface1to4(4) = int(& real(iFace1D-nIntFace(2)-nIntFace(1)-1_pInt,pReal)/& real(nGDim(1),pReal)/& real(nGDim(2),pReal)& ,pInt)+1_pInt endif endfunction !******************************************************************** ! calculating the grain deformation gradient ! (the same with homogenization_RGC_partionDeformation, ! but used only for perturbation scheme) !******************************************************************** subroutine homogenization_RGC_grainDeformation(& F, & ! partioned def grad per grain ! F0, & ! initial partioned def grad per grain avgF, & ! my average def grad state, & ! my state ip, & ! my IP el & ! my element ) use prec, only: pReal,pInt,p_vec use mesh, only: mesh_element use material, only: homogenization_maxNgrains,homogenization_Ngrains,homogenization_typeInstance implicit none real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: F0 real(pReal), dimension (3,3), intent(in) :: avgF type(p_vec), intent(in) :: state integer(pInt), intent(in) :: el,ip ! real(pReal), dimension (3) :: aVect,nVect integer(pInt), dimension (4) :: intFace integer(pInt), dimension (3) :: iGrain3 integer(pInt) homID, iGrain,iFace,i,j ! integer(pInt), parameter :: nFace = 6_pInt !* Compute the deformation gradient of individual grains due to relaxations homID = homogenization_typeInstance(mesh_element(3,el)) F = 0.0_pReal do iGrain = 1_pInt,homogenization_Ngrains(mesh_element(3,el)) iGrain3 = homogenization_RGC_grain1to3(iGrain,homID) do iFace = 1_pInt,nFace intFace = homogenization_RGC_getInterface(iFace,iGrain3) aVect = homogenization_RGC_relaxationVector(intFace,state,homID) nVect = homogenization_RGC_interfaceNormal(intFace,ip,el) forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) & F(i,j,iGrain) = F(i,j,iGrain) + aVect(i)*nVect(j) ! effective relaxations enddo F(:,:,iGrain) = F(:,:,iGrain) + avgF(:,:) ! relaxed deformation gradient enddo endsubroutine END MODULE