! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH !> @brief homogenization manager, organizing deformation partitioning and stress homogenization !-------------------------------------------------------------------------------------------------- module homogenization use prec, only: & pInt, & pReal, & p_vec !-------------------------------------------------------------------------------------------------- ! General variables for the homogenization at a material point implicit none private type(p_vec), dimension(:,:), allocatable, public :: & homogenization_state0 !< pointer array to homogenization state at start of FE increment real(pReal), dimension(:,:), allocatable, public :: & materialpoint_Temperature !< temperature at IP real(pReal), dimension(:,:,:,:), allocatable, public :: & materialpoint_F0, & !< def grad of IP at start of FE increment materialpoint_F, & !< def grad of IP to be reached at end of FE increment materialpoint_P !< first P--K stress of IP real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: & materialpoint_dPdF !< tangent of first P--K stress at IP real(pReal), dimension(:,:,:), allocatable, public :: & materialpoint_results !< results array of material point type(p_vec), dimension(:,:), allocatable, public, protected :: & homogenization_state !< pointer array to current homogenization state (end of converged time step) integer(pInt), dimension(:,:), allocatable, public, protected :: & homogenization_sizeState !< size of state array per grain integer(pInt), public, protected :: & materialpoint_sizeResults, & homogenization_maxSizePostResults type(p_vec), dimension(:,:), allocatable, private :: & homogenization_subState0 !< pointer array to homogenization state at start of homogenization increment real(pReal), dimension(:,:,:,:), allocatable, private :: & materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment materialpoint_subF !< def grad of IP to be reached at end of homog inc real(pReal), dimension(:,:), allocatable, private :: & materialpoint_subFrac, & materialpoint_subStep, & materialpoint_subdt integer(pInt), dimension(:,:), allocatable, private :: & homogenization_sizePostResults !< size of postResults array per material point integer(pInt), private :: & homogenization_maxSizeState logical, dimension(:,:), allocatable, private :: & materialpoint_requested, & materialpoint_converged logical, dimension(:,:,:), allocatable, private :: & materialpoint_doneAndHappy public :: & homogenization_init, & materialpoint_stressAndItsTangent, & materialpoint_postResults private :: & homogenization_partitionDeformation, & homogenization_updateState, & homogenization_averageStressAndItsTangent, & homogenization_averageTemperature, & homogenization_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !-------------------------------------------------------------------------------------------------- subroutine homogenization_init(Temperature) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use math, only: & math_I3 use debug, only: & debug_level, & debug_homogenization, & debug_levelBasic use IO, only: & IO_error, & IO_open_file, & IO_open_jobFile_stat, & IO_write_jobFile, & IO_write_jobBinaryIntFile use mesh, only: & mesh_maxNips, & mesh_NcpElems, & mesh_element, & FE_Nips, & FE_geomtype use constitutive, only: & constitutive_maxSizePostResults use crystallite, only: & crystallite_maxSizePostResults use material use homogenization_isostrain use homogenization_RGC implicit none real(pReal) Temperature integer(pInt), parameter :: fileunit = 200_pInt integer(pInt) e,i,p,myInstance integer(pInt), dimension(:,:), pointer :: thisSize character(len=64), dimension(:,:), pointer :: thisOutput logical :: knownHomogenization !-------------------------------------------------------------------------------------------------- ! parse homogenization from config file if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present... call IO_open_file(fileunit,material_configFile) ! ... open material.config file endif call homogenization_isostrain_init(fileunit) call homogenization_RGC_init(fileunit) close(fileunit) !-------------------------------------------------------------------------------------------------- ! write description file for homogenization output call IO_write_jobFile(fileunit,'outputHomogenization') do p = 1,material_Nhomogenization i = homogenization_typeInstance(p) ! which instance of this homogenization type knownHomogenization = .true. ! assume valid select case(homogenization_type(p)) ! split per homogenization type case (homogenization_isostrain_label) thisOutput => homogenization_isostrain_output thisSize => homogenization_isostrain_sizePostResult case (homogenization_RGC_label) thisOutput => homogenization_RGC_output thisSize => homogenization_RGC_sizePostResult case default knownHomogenization = .false. end select write(fileunit,*) write(fileunit,'(a)') '['//trim(homogenization_name(p))//']' write(fileunit,*) if (knownHomogenization) then write(fileunit,'(a)') '(type)'//char(9)//trim(homogenization_type(p)) write(fileunit,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p) do e = 1,homogenization_Noutput(p) write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i) enddo endif enddo close(fileunit) !-------------------------------------------------------------------------------------------------- ! allocate and initialize global variables allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_state(mesh_maxNips,mesh_NcpElems)) allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)) homogenization_sizeState = 0_pInt allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)) homogenization_sizePostResults = 0_pInt allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)) materialpoint_dPdF = 0.0_pReal allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems)) allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)) materialpoint_F = 0.0_pReal allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)) materialpoint_subF0 = 0.0_pReal allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)) materialpoint_subF = 0.0_pReal allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)) materialpoint_P = 0.0_pReal allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)) materialpoint_Temperature = Temperature allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)) materialpoint_subFrac = 0.0_pReal allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)) materialpoint_subStep = 0.0_pReal allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)) materialpoint_subdt = 0.0_pReal allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)) materialpoint_requested = .false. allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)) materialpoint_converged = .true. allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)) materialpoint_doneAndHappy = .true. materialpoint_F0 = spread(spread(math_I3,3,mesh_maxNips),4,mesh_NcpElems) ! initialize to identity materialpoint_F = materialpoint_F0 !-------------------------------------------------------------------------------------------------- ! allocate and initialize global state and postrestuls variables elementLooping: do e = 1,mesh_NcpElems myInstance = homogenization_typeInstance(mesh_element(3,e)) IpLooping: do i = 1,FE_Nips(FE_geomtype(mesh_element(2,e))) select case(homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance))) allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance))) allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance))) homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance) homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance) endif homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance) case (homogenization_RGC_label) if (homogenization_RGC_sizeState(myInstance) > 0_pInt) then allocate(homogenization_state0(i,e)%p(homogenization_RGC_sizeState(myInstance))) allocate(homogenization_subState0(i,e)%p(homogenization_RGC_sizeState(myInstance))) allocate(homogenization_state(i,e)%p(homogenization_RGC_sizeState(myInstance))) homogenization_state0(i,e)%p = homogenization_RGC_stateInit(myInstance) homogenization_sizeState(i,e) = homogenization_RGC_sizeState(myInstance) endif homogenization_sizePostResults(i,e) = homogenization_RGC_sizePostResults(myInstance) case default call IO_error(500_pInt,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown homogenization end select enddo IpLooping enddo elementLooping !-------------------------------------------------------------------------------------------------- ! write state size file out call IO_write_jobBinaryIntFile(777,'sizeStateHomog',size(homogenization_sizeState)) write (777,rec=1) homogenization_sizeState close(777) homogenization_maxSizeState = maxval(homogenization_sizeState) homogenization_maxSizePostResults = maxval(homogenization_sizePostResults) materialpoint_sizeResults = 1 & ! grain count + 1 + homogenization_maxSizePostResults & ! homogSize & homogResult + homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results + 1 + constitutive_maxSizePostResults) ! constitutive size & constitutive results allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems)) write(6,'(/,a)') ' <<<+- homogenization init -+>>>' write(6,'(a)') ' $Id$' #include "compilation_info.f90" if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0) write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0) write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state) write(6,'(a32,1x,7(i8,1x))') 'homogenization_sizeState: ', shape(homogenization_sizeState) write(6,'(a32,1x,7(i8,1x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults) write(6,*) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy) write(6,*) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_results: ', shape(materialpoint_results) write(6,*) write(6,'(a32,1x,7(i8,1x))') 'maxSizeState: ', homogenization_maxSizeState write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults endif flush(6) end subroutine homogenization_init !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of stress and corresponding tangent at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_stressAndItsTangent(updateJaco,dt) use numerics, only: & subStepMinHomog, & subStepSizeHomog, & stepIncreaseHomog, & nHomog, & nMPstate use math, only: & math_transpose33 use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP, & terminallyIll use mesh, only: & mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_Ngrains use constitutive, only: & constitutive_state0, & constitutive_partionedState0, & constitutive_state use crystallite, only: & crystallite_Temperature, & crystallite_F0, & crystallite_Fp0, & crystallite_Fp, & crystallite_Lp0, & crystallite_Lp, & crystallite_dPdF, & crystallite_dPdF0, & crystallite_Tstar0_v, & crystallite_Tstar_v, & crystallite_partionedTemperature0, & crystallite_partionedF0, & crystallite_partionedF, & crystallite_partionedFp0, & crystallite_partionedLp0, & crystallite_partioneddPdF0, & crystallite_partionedTstar0_v, & crystallite_dt, & crystallite_requested, & crystallite_converged, & crystallite_stressAndItsTangent, & crystallite_orientations use debug, only: & debug_level, & debug_homogenization, & debug_levelBasic, & debug_levelSelective, & debug_e, & debug_i, & debug_MaterialpointLoopDistribution, & debug_MaterialpointStateLoopDistribution use math, only: & math_pDecomposition implicit none real(pReal), intent(in) :: dt !< time increment logical, intent(in) :: updateJaco !< initiating Jacobian update logical :: rate_sensitivity integer(pInt) :: & NiterationHomog, & NiterationMPstate, & g, & !< grain number i, & !< integration point number e, & !< element number myNgrains !-------------------------------------------------------------------------------------------------- ! initialize to starting condition if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt .and. & debug_e > 0 .and. debug_e <= mesh_NcpElems .and. debug_i > 0 .and. debug_i <= mesh_maxNips) then !$OMP CRITICAL (write2out) write(6,*) write(6,'(a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i write(6,'(a,/,12x,f14.9)') '<< HOMOG >> Temp0', & materialpoint_Temperature(debug_i,debug_e) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', & math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', & math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e)) !$OMP END CRITICAL (write2out) endif !-------------------------------------------------------------------------------------------------- ! initialize restoration points of ... do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures crystallite_partionedTemperature0(g,i,e) = materialpoint_Temperature(i,e) ! ...temperatures crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) ! ...plastic def grads crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) ! ...plastic velocity grads crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) ! ...def grads crystallite_partionedTstar0_v(1:6,g,i,e) = crystallite_Tstar0_v(1:6,g,i,e) ! ...2nd PK stress endforall forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e)) materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad materialpoint_subFrac(i,e) = 0.0_pReal materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <> materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size materialpoint_requested(i,e) = .true. ! everybody requires calculation endforall forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), homogenization_sizeState(i,e) > 0_pInt) & homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenization state enddo NiterationHomog = 0_pInt cutBackLooping: do while (.not. terminallyIll .and. & any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog)) !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) converged: if ( materialpoint_converged(i,e) ) then #ifndef _OPENMP if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0_pInt)) then write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', & materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', & materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i endif #endif !-------------------------------------------------------------------------------------------------- ! calculate new subStep and new subFrac materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e) !$OMP FLUSH(materialpoint_subFrac) materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), & stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration !$OMP FLUSH(materialpoint_subStep) steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then ! wind forward grain starting point of... crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature(1:myNgrains,i,e) ! ...temperatures crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad !$OMP FLUSH(materialpoint_subF0) elseif (materialpoint_requested(i,e)) then steppingNeeded ! already at final time (??) if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionHomog) debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = & debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1 !$OMP END CRITICAL (distributionHomog) endif endif steppingNeeded else converged if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep ! cutback makes no sense !$OMP FLUSH(terminallyIll) if (.not. terminallyIll) then ! so first signals terminally ill... !$OMP CRITICAL (write2out) write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill' !$OMP END CRITICAL (write2out) endif !$OMP CRITICAL (setTerminallyIll) terminallyIll = .true. ! ...and kills all others !$OMP END CRITICAL (setTerminallyIll) else ! cutback makes sense materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback !$OMP FLUSH(materialpoint_subStep) #ifndef _OPENMP if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0_pInt)) then write(6,'(a,1x,f12.8,a,i8,1x,i2/)') & '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',& materialpoint_subStep(i,e),' at el ip',e,i endif #endif !-------------------------------------------------------------------------------------------------- ! restore... crystallite_Temperature(1:myNgrains,i,e) = crystallite_partionedTemperature0(1:myNgrains,i,e) ! ...temperatures ! ...initial def grad unchanged crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures if (homogenization_sizeState(i,e) > 0_pInt) & homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme endif endif converged if (materialpoint_subStep(i,e) > subStepMinHomog) then materialpoint_requested(i,e) = .true. materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + & materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e)) materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.] endif enddo IpLooping1 enddo elementLooping1 !$OMP END PARALLEL DO NiterationMPstate = 0_pInt convergenceLooping: do while (.not. terminallyIll .and. & any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & ) .and. & NiterationMPstate < nMPstate) NiterationMPstate = NiterationMPstate + 1 !-------------------------------------------------------------------------------------------------- ! deformation partitioning ! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state, ! results in crystallite_partionedF !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if ( materialpoint_requested(i,e) .and. & ! process requested but... .not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents else crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore endif enddo IpLooping2 enddo elementLooping2 !$OMP END PARALLEL DO !-------------------------------------------------------------------------------------------------- ! crystallite integration ! based on crystallite_partionedF0,.._partionedF ! incrementing by crystallite_dt rate_sensitivity = .false. ! request rate sensitive contribution to dPdF call crystallite_stressAndItsTangent(updateJaco,rate_sensitivity) ! request stress and tangent calculation for constituent grains !-------------------------------------------------------------------------------------------------- ! state update !$OMP PARALLEL DO elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if ( materialpoint_requested(i,e) .and. & .not. materialpoint_doneAndHappy(1,i,e)) then if (.not. all(crystallite_converged(:,i,e))) then materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.] materialpoint_converged(i,e) = .false. else materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e) materialpoint_converged(i,e) = all(homogenization_updateState(i,e)) ! converged if done and happy endif !$OMP FLUSH(materialpoint_converged) if (materialpoint_converged(i,e)) then if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionMPState) debug_MaterialpointStateLoopdistribution(NiterationMPstate) = & debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1_pInt !$OMP END CRITICAL (distributionMPState) endif endif endif enddo IpLooping3 enddo elementLooping3 !$OMP END PARALLEL DO enddo convergenceLooping NiterationHomog = NiterationHomog + 1_pInt enddo cutBackLooping if (.not. terminallyIll ) then call crystallite_orientations() ! calculate crystal orientations !$OMP PARALLEL DO elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) call homogenization_averageStressAndItsTangent(i,e) call homogenization_averageTemperature(i,e) enddo IpLooping4 enddo elementLooping4 !$OMP END PARALLEL DO else !$OMP CRITICAL (write2out) write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill' !$OMP END CRITICAL (write2out) endif end subroutine materialpoint_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of result array at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_postResults(dt) use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element use material, only: & homogenization_Ngrains, & microstructure_crystallite use constitutive, only: & constitutive_sizePostResults, & constitutive_postResults use crystallite, only: & crystallite_sizePostResults, & crystallite_postResults implicit none real(pReal), intent(in) :: dt integer(pInt) :: & thePos, & theSize, & myNgrains, & myCrystallite, & g, & !< grain number i, & !< integration point number e !< element number !$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize) elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) myCrystallite = microstructure_crystallite(mesh_element(4,e)) IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) thePos = 0_pInt theSize = homogenization_sizePostResults(i,e) materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results thePos = thePos + 1_pInt if (theSize > 0_pInt) then ! any homogenization results to mention? materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results thePos = thePos + theSize endif materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint thePos = thePos + 1_pInt grainLooping :do g = 1,myNgrains theSize = (1 + crystallite_sizePostResults(myCrystallite)) + (1 + constitutive_sizePostResults(g,i,e)) materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(dt,g,i,e) ! tell crystallite results thePos = thePos + theSize enddo grainLooping enddo IpLooping enddo elementLooping !$OMP END PARALLEL DO end subroutine materialpoint_postResults !-------------------------------------------------------------------------------------------------- !> @brief partition material point def grad onto constituents !-------------------------------------------------------------------------------------------------- subroutine homogenization_partitionDeformation(i,e) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains use crystallite, only: & crystallite_partionedF0, & crystallite_partionedF use homogenization_isostrain, only: & homogenization_isostrain_label, & homogenization_isostrain_partitionDeformation use homogenization_RGC, only: & homogenization_RGC_label, & homogenization_RGC_partitionDeformation implicit none integer(pInt), intent(in) :: & i, & !< integration point e !< element number chosenHomogenization: select case(homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) chosenHomogenization call homogenization_isostrain_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,i,e),& materialpoint_subF(1:3,1:3,i,e),& homogenization_state(i,e), & i, & e) case (homogenization_RGC_label) chosenHomogenization call homogenization_RGC_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,i,e),& materialpoint_subF(1:3,1:3,i,e),& homogenization_state(i,e), & i, & e) end select chosenHomogenization end subroutine homogenization_partitionDeformation !-------------------------------------------------------------------------------------------------- !> @brief update the internal state of the homogenization scheme and tell whether "done" and !> "happy" with result !-------------------------------------------------------------------------------------------------- function homogenization_updateState(i,e) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains use crystallite, only: & crystallite_P, & crystallite_dPdF, & crystallite_partionedF,& crystallite_partionedF0 use homogenization_isostrain, only: & homogenization_isostrain_updateState, & homogenization_isostrain_label use homogenization_RGC, only: & homogenization_RGC_updateState, & homogenization_RGC_label implicit none integer(pInt), intent(in) :: & i, & !< integration point e !< element number logical, dimension(2) :: homogenization_updateState chosenHomogenization: select case(homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) chosenHomogenization homogenization_updateState = & homogenization_isostrain_updateState( homogenization_state(i,e), & crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), & i, & e) case (homogenization_RGC_label) chosenHomogenization homogenization_updateState = & homogenization_RGC_updateState( homogenization_state(i,e), & homogenization_subState0(i,e), & crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,i,e),& materialpoint_subF(1:3,1:3,i,e),& materialpoint_subdt(i,e), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), & i, & e) end select chosenHomogenization end function homogenization_updateState !-------------------------------------------------------------------------------------------------- !> @brief derive average stress and stiffness from constituent quantities !-------------------------------------------------------------------------------------------------- subroutine homogenization_averageStressAndItsTangent(i,e) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains use crystallite, only: & crystallite_P,crystallite_dPdF use homogenization_isostrain, only: & homogenization_isostrain_averageStressAndItsTangent, & homogenization_isostrain_label use homogenization_RGC, only: & homogenization_RGC_averageStressAndItsTangent, & homogenization_RGC_label implicit none integer(pInt), intent(in) :: & i, & !< integration point e !< element number chosenHomogenization: select case(homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) chosenHomogenization call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(1:3,1:3,i,e), & materialpoint_dPdF(1:3,1:3,1:3,1:3,i,e),& crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), & i, & e) case (homogenization_RGC_label) chosenHomogenization call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(1:3,1:3,i,e), & materialpoint_dPdF(1:3,1:3,1:3,1:3,i,e),& crystallite_P(1:3,1:3,1:homogenization_maxNgrains,i,e), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,i,e), & i, & e) end select chosenHomogenization end subroutine homogenization_averageStressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief derive average temperature from constituent quantities !-------------------------------------------------------------------------------------------------- subroutine homogenization_averageTemperature(i,e) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains use crystallite, only: & crystallite_Temperature use homogenization_isostrain, only: & homogenization_isostrain_averageTemperature, & homogenization_isostrain_label use homogenization_RGC, only: & homogenization_RGC_averageTemperature, & homogenization_RGC_label implicit none integer(pInt), intent(in) :: & i, & !< integration point e !< element number chosenHomogenization: select case(homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) chosenHomogenization materialpoint_Temperature(i,e) = & homogenization_isostrain_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,i,e), i, e) case (homogenization_RGC_label) chosenHomogenization materialpoint_Temperature(i,e) = & homogenization_RGC_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,i,e), i, e) end select chosenHomogenization end subroutine homogenization_averageTemperature !-------------------------------------------------------------------------------------------------- !> @brief return array of homogenization results for post file inclusion. call only, !> if homogenization_sizePostResults(i,e) > 0 !! !-------------------------------------------------------------------------------------------------- function homogenization_postResults(i,e) use mesh, only: & mesh_element use material, only: & homogenization_type use homogenization_isostrain, only: & homogenization_isostrain_postResults, & homogenization_isostrain_label use homogenization_RGC, only: & homogenization_RGC_postResults, & homogenization_RGC_label implicit none integer(pInt), intent(in) :: & i, & !< integration point e !< element number real(pReal), dimension(homogenization_sizePostResults(i,e)) :: homogenization_postResults homogenization_postResults = 0.0_pReal chosenHomogenization: select case (homogenization_type(mesh_element(3,e))) case (homogenization_isostrain_label) chosenHomogenization homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(i,e),i,e) case (homogenization_RGC_label) chosenHomogenization homogenization_postResults = homogenization_RGC_postResults(homogenization_state(i,e),i,e) end select chosenHomogenization end function homogenization_postResults end module homogenization