"""Miscellaneous helper functionality."""

import sys as _sys
import datetime as _datetime
import os as _os
import subprocess as _subprocess
import shlex as _shlex
import re as _re
import signal as _signal
import fractions as _fractions
from collections import abc as _abc, OrderedDict as _OrderedDict
from functools import reduce as _reduce, partial as _partial, wraps as _wraps
import inspect
from typing import Optional as _Optional, Callable as _Callable, Union as _Union, Iterable as _Iterable, \
                   Dict as _Dict, List as _List, Tuple as _Tuple, Literal as _Literal, \
                   Any as _Any, TextIO as _TextIO
from pathlib import Path as _Path

import numpy as _np
import h5py as _h5py

from . import version as _version
from ._typehints import FloatSequence as _FloatSequence, NumpyRngSeed as _NumpyRngSeed, FileHandle as _FileHandle

# https://svn.blender.org/svnroot/bf-blender/trunk/blender/build_files/scons/tools/bcolors.py
# https://stackoverflow.com/questions/287871
_colors = {
           'header' :   '\033[95m',
           'OK_blue':   '\033[94m',
           'OK_green':  '\033[92m',
           'warning':   '\033[93m',
           'fail':      '\033[91m',
           'end_color': '\033[0m',
           'bold':      '\033[1m',
           'dim':       '\033[2m',
           'underline': '\033[4m',
           'crossout':  '\033[9m'
          }

####################################################################################################
# Functions
####################################################################################################
def srepr(msg,
          glue: str = '\n',
          quote: bool = False) -> str:
    r"""
    Join (quoted) items with glue string.

    Parameters
    ----------
    msg : (sequence of) object with __repr__
        Items to join.
    glue : str, optional
        Glue used for joining operation. Defaults to '\n'.
    quote : bool, optional
        Quote items. Defaults to False.

    Returns
    -------
    joined : str
        String representation of the joined and quoted items.

    """
    q = '"' if quote else ''
    if (not hasattr(msg, 'strip') and
           (hasattr(msg, '__getitem__') or
            hasattr(msg, '__iter__'))):
        return glue.join(q+str(x)+q for x in msg)
    else:
        return q+(msg if isinstance(msg,str) else repr(msg))+q


def emph(msg) -> str:
    """
    Format with emphasis.

    Parameters
    ----------
    msg : (sequence of) object with __repr__
        Message to format.

    Returns
    -------
    formatted : str
        Formatted string representation of the joined items.

    """
    return _colors['bold']+srepr(msg)+_colors['end_color']

def deemph(msg) -> str:
    """
    Format with deemphasis.

    Parameters
    ----------
    msg : (sequence of) object with __repr__
        Message to format.

    Returns
    -------
    formatted : str
        Formatted string representation of the joined items.

    """
    return _colors['dim']+srepr(msg)+_colors['end_color']

def warn(msg) -> str:
    """
    Format for warning.

    Parameters
    ----------
    msg : (sequence of) object with __repr__
        Message to format.

    Returns
    -------
    formatted : str
        Formatted string representation of the joined items.

    """
    return _colors['warning']+emph(msg)+_colors['end_color']

def strikeout(msg) -> str:
    """
    Format as strikeout.

    Parameters
    ----------
    msg : (iterable of) object with __repr__
        Message to format.

    Returns
    -------
    formatted : str
        Formatted string representation of the joined items.

    """
    return _colors['crossout']+srepr(msg)+_colors['end_color']


def run(cmd: str,
        wd: str = './',
        env: _Optional[_Dict[str, str]] = None,
        timeout: _Optional[int] = None) -> _Tuple[str, str]:
    """
    Run a command.

    Parameters
    ----------
    cmd : str
        Command to be executed.
    wd : str, optional
        Working directory of process. Defaults to './'.
    env : dict, optional
        Environment for execution.
    timeout : integer, optional
        Timeout in seconds.

    Returns
    -------
    stdout, stderr : (str, str)
        Output of the executed command.

    """
    def pass_signal(sig,_,proc,default):
        proc.send_signal(sig)
        _signal.signal(sig,default)
        _signal.raise_signal(sig)

    signals = [_signal.SIGINT,_signal.SIGTERM]

    print(f"running '{cmd}' in '{wd}'")
    process = _subprocess.Popen(_shlex.split(cmd),
                                stdout = _subprocess.PIPE,
                                stderr = _subprocess.PIPE,
                                env = _os.environ if env is None else env,
                                cwd = wd,
                                encoding = 'utf-8')
    # ensure that process is terminated (https://stackoverflow.com/questions/22916783)
    sig_states = [_signal.signal(sig,_partial(pass_signal,proc=process,default=_signal.getsignal(sig))) for sig in signals]

    try:
        stdout,stderr = process.communicate(timeout=timeout)
    finally:
        for sig,state in zip(signals,sig_states):
            _signal.signal(sig,state)

    if process.returncode != 0:
        print(stdout)
        print(stderr)
        raise RuntimeError(f"'{cmd}' failed with returncode {process.returncode}")

    return stdout, stderr


def open_text(fname: _FileHandle,
              mode: _Literal['r','w'] = 'r') -> _TextIO:                                            # noqa
    """
    Open a text file.

    Parameters
    ----------
    fname : file, str, or pathlib.Path
        Name or handle of file.
    mode: {'r','w'}, optional
        Access mode: 'r'ead or 'w'rite, defaults to 'r'.

    Returns
    -------
    f : file handle

    """
    return fname if not isinstance(fname, (str,_Path)) else \
           open(_Path(fname).expanduser(),mode,newline=('\n' if mode == 'w' else None))


def execution_stamp(class_name: str,
                    function_name: _Optional[str] = None) -> str:
    """Timestamp the execution of a (function within a) class."""
    now = _datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S%z')
    _function_name = '' if function_name is None else f'.{function_name}'
    return f'damask.{class_name}{_function_name} v{_version} ({now})'


def natural_sort(key: str) -> _List[_Union[int, str]]:
    """
    Natural sort.

    For use in python's 'sorted'.

    References
    ----------
    https://en.wikipedia.org/wiki/Natural_sort_order

    """
    convert = lambda text: int(text) if text.isdigit() else text
    return [ convert(c) for c in _re.split('([0-9]+)', key) ]


def show_progress(iterable: _Iterable,
                  N_iter: _Optional[int] = None,
                  prefix: str = '',
                  bar_length: int = 50) -> _Any:
    """
    Decorate a loop with a progress bar.

    Use similar like enumerate.

    Parameters
    ----------
    iterable : iterable
        Iterable to be decorated.
    N_iter : int, optional
        Total number of iterations. Required if iterable is not a sequence.
    prefix : str, optional
        Prefix string.
    bar_length : int, optional
        Length of progress bar in characters. Defaults to 50.

    """
    if isinstance(iterable,_abc.Sequence):
        if N_iter is None:
            N = len(iterable)
        else:
            raise ValueError('N_iter given for sequence')
    else:
        if N_iter is None:
            raise ValueError('N_iter not given')

        N = N_iter

    if N <= 1:
        for item in iterable:
            yield item
    else:
        status = ProgressBar(N,prefix,bar_length)
        for i,item in enumerate(iterable):
            yield item
            status.update(i)


def scale_to_coprime(v: _FloatSequence) -> _np.ndarray:
    """
    Scale vector to co-prime (relatively prime) integers.

    Parameters
    ----------
    v : sequence of float, len (:)
        Vector to scale.

    Returns
    -------
    m : numpy.ndarray, shape (:)
        Vector scaled to co-prime numbers.

    """
    MAX_DENOMINATOR = 1000000

    def get_square_denominator(x):
        """Denominator of the square of a number."""
        return _fractions.Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator

    def lcm(a,b):
        """Least common multiple."""
        try:
            return _np.lcm(a,b)                                                                      # numpy > 1.18
        except AttributeError:
            return a * b // _np.gcd(a, b)

    v_ = _np.array(v)
    m = (v_ * _reduce(lcm, map(lambda x: int(get_square_denominator(x)),v_))**0.5).astype(_np.int64)
    m = m//_reduce(_np.gcd,m)

    with _np.errstate(invalid='ignore'):
        if not _np.allclose(_np.ma.masked_invalid(v_/m),v_[_np.argmax(abs(v_))]/m[_np.argmax(abs(v_))]):
            raise ValueError(f'invalid result "{m}" for input "{v_}"')

    return m


def project_equal_angle(vector: _np.ndarray,
                        direction: _Literal['x', 'y', 'z'] = 'z',                                   # noqa
                        normalize: bool = True,
                        keepdims: bool = False) -> _np.ndarray:
    """
    Apply equal-angle projection to vector.

    Parameters
    ----------
    vector : numpy.ndarray, shape (...,3)
        Vector coordinates to be projected.
    direction : {'x', 'y', 'z'}
        Projection direction. Defaults to 'z'.
    normalize : bool
        Ensure unit length of input vector. Defaults to True.
    keepdims : bool
        Maintain three-dimensional output coordinates.
        Defaults to False.

    Returns
    -------
    coordinates : numpy.ndarray, shape (...,2 | 3)
        Projected coordinates.

    Notes
    -----
    Two-dimensional output uses right-handed frame spanned by
    the next and next-next axis relative to the projection direction,
    e.g. x-y when projecting along z and z-x when projecting along y.

    Examples
    --------
    >>> import damask
    >>> import numpy as np
    >>> project_equal_angle(np.ones(3))
        [0.3660254, 0.3660254]
    >>> project_equal_angle(np.ones(3),direction='x',normalize=False,keepdims=True)
        [0, 0.5, 0.5]
    >>> project_equal_angle([0,1,1],direction='y',normalize=True,keepdims=False)
        [0.41421356, 0]

    """
    shift = 'zyx'.index(direction)
    v = _np.roll(vector/_np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
                 shift,axis=-1)
    return _np.roll(_np.block([v[...,:2]/(1.0+_np.abs(v[...,2:3])),_np.zeros_like(v[...,2:3])]),
                    -shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]

def project_equal_area(vector: _np.ndarray,
                       direction: _Literal['x', 'y', 'z'] = 'z',                                    # noqa
                       normalize: bool = True,
                       keepdims: bool = False) -> _np.ndarray:
    """
    Apply equal-area projection to vector.

    Parameters
    ----------
    vector : numpy.ndarray, shape (...,3)
        Vector coordinates to be projected.
    direction : {'x', 'y', 'z'}
        Projection direction. Defaults to 'z'.
    normalize : bool
        Ensure unit length of input vector. Defaults to True.
    keepdims : bool
        Maintain three-dimensional output coordinates.
        Defaults to False.

    Returns
    -------
    coordinates : numpy.ndarray, shape (...,2 | 3)
        Projected coordinates.

    Notes
    -----
    Two-dimensional output uses right-handed frame spanned by
    the next and next-next axis relative to the projection direction,
    e.g. x-y when projecting along z and z-x when projecting along y.


    Examples
    --------
    >>> import damask
    >>> import numpy as np
    >>> project_equal_area(np.ones(3))
        [0.45970084, 0.45970084]
    >>> project_equal_area(np.ones(3),direction='x',normalize=False,keepdims=True)
        [0.0, 0.70710678, 0.70710678]
    >>> project_equal_area([0,1,1],direction='y',normalize=True,keepdims=False)
        [0.5411961, 0.0]

    """
    shift = 'zyx'.index(direction)
    v = _np.roll(vector/_np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
                 shift,axis=-1)
    return _np.roll(_np.block([v[...,:2]/_np.sqrt(1.0+_np.abs(v[...,2:3])),_np.zeros_like(v[...,2:3])]),
                    -shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]


def hybrid_IA(dist: _FloatSequence,
              N: int,
              rng_seed: _Optional[_NumpyRngSeed] = None) -> _np.ndarray:
    """
    Hybrid integer approximation.

    Parameters
    ----------
    dist : numpy.ndarray
        Distribution to be approximated.
    N : int
        Number of samples to draw.
    rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the BitGenerator. Defaults to None.
        If None, then fresh, unpredictable entropy will be pulled from the OS.

    Returns
    -------
    hist : numpy.ndarray, shape (N)
        Integer approximation of the distribution.

    """
    N_opt_samples = max(_np.count_nonzero(dist),N)                                                  # random subsampling if too little samples requested
    N_inv_samples = 0

    scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
    while (not _np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
        repeats = _np.rint(scale*_np.array(dist)).astype(_np.int64)
        N_inv_samples = _np.sum(repeats)
        scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
                                   if N_inv_samples < N_opt_samples else \
                                  (scale_,0.5*(scale_ + scale), 1.0)

    return _np.repeat(_np.arange(len(dist)),repeats)[_np.random.default_rng(rng_seed).permutation(N_inv_samples)[:N]]


def shapeshifter(fro: _Tuple[int, ...],
                 to: _Tuple[int, ...],
                 mode: _Literal['left','right'] = 'left',                                           # noqa
                 keep_ones: bool = False) -> _Tuple[int, ...]:
    """
    Return dimensions that reshape 'fro' to become broadcastable to 'to'.

    Parameters
    ----------
    fro : tuple
        Original shape of array.
    to : tuple
        Target shape of array after broadcasting.
        len(to) cannot be less than len(fro).
    mode : {'left', 'right'}, optional
        Indicates whether new axes are preferably added to
        either left or right of the original shape.
        Defaults to 'left'.
    keep_ones : bool, optional
        Treat '1' in fro as literal value instead of dimensional placeholder.
        Defaults to False.

    Returns
    -------
    new_dims : tuple
        Dimensions for reshape.

    Examples
    --------
    >>> import numpy as np
    >>> from damask import util
    >>> a = np.ones((3,4,2))
    >>> b = np.ones(4)
    >>> b_extended = b.reshape(util.shapeshifter(b.shape,a.shape))
    >>> (a * np.broadcast_to(b_extended,a.shape)).shape
    (3,4,2)

    """
    if len(fro) == 0 and len(to) == 0: return tuple()
    _fro = [1] if len(fro) == 0 else list(fro)[::-1 if mode=='left' else 1]
    _to  = [1] if len(to)  == 0 else list(to) [::-1 if mode=='left' else 1]

    final_shape: _List[int] = []
    index = 0
    for i,item in enumerate(_to):
        if item == _fro[index]:
            final_shape.append(item)
            index+=1
        else:
            final_shape.append(1)
            if _fro[index] == 1 and not keep_ones:
                index+=1
        if index == len(_fro):
            final_shape = final_shape+[1]*(len(_to)-i-1)
            break
    if index != len(_fro): raise ValueError(f'shapes cannot be shifted {fro} --> {to}')
    return tuple(final_shape[::-1] if mode == 'left' else final_shape)

def shapeblender(a: _Tuple[int, ...],
                 b: _Tuple[int, ...]) -> _Tuple[int, ...]:
    """
    Return a shape that overlaps the rightmost entries of 'a' with the leftmost of 'b'.

    Parameters
    ----------
    a : tuple
        Shape of first array.
    b : tuple
        Shape of second array.

    Examples
    --------
    >>> shapeblender((4,4,3),(3,2,1))
        (4,4,3,2,1)
    >>> shapeblender((1,2),(1,2,3))
        (1,2,3)
    >>> shapeblender((1,),(2,2,1))
        (1,2,2,1)
    >>> shapeblender((3,2),(3,2))
        (3,2)

    """
    i = min(len(a),len(b))
    while i > 0 and a[-i:] != b[:i]: i -= 1
    return a + b[i:]


def _docstringer(docstring: _Union[str, _Callable],
                 adopted_parameters: _Union[None, str, _Callable] = None,
                 adopted_return: _Union[None, str, _Callable] = None,
                 adopted_notes: _Union[None, str, _Callable] = None,
                 adopted_examples: _Union[None, str, _Callable] = None,
                 adopted_references: _Union[None, str, _Callable] = None) -> str:
    """
    Extend a docstring.

    Parameters
    ----------
    docstring : str or callable, optional
       Docstring (of callable) to extend.
    adopted_* : str or callable, optional
       Additional information to insert into/append to respective section.

    Notes
    -----
    adopted_return fetches the typehint of a passed function instead of the docstring

    """
    docstring_: str = str(     docstring if isinstance(docstring,str)
                          else docstring.__doc__ if callable(docstring) and docstring.__doc__
                          else '').rstrip()+'\n'
    sections = _OrderedDict(
        Parameters=adopted_parameters,
        Returns=adopted_return,
        Examples=adopted_examples,
        Notes=adopted_notes,
        References=adopted_references)

    for i, (key, adopted) in [(i,(k,v)) for (i,(k,v)) in enumerate(sections.items()) if v is not None]:
        section_regex = fr'^([ ]*){key}\s*\n\1*{"-"*len(key)}\s*\n'
        if key=='Returns':
            if callable(adopted):
                return_class = adopted.__annotations__.get('return','')
                return_type_ = (_sys.modules[adopted.__module__].__name__.split('.')[0]
                                +'.'
                                +(return_class.__name__ if not isinstance(return_class,str) else return_class))
            else:
                return_type_ = adopted
            docstring_ = _re.sub(fr'(^[ ]*{key}\s*\n\s*{"-"*len(key)}\s*\n[ ]*[A-Za-z0-9_ ]*: )(.*)\n',
                                 fr'\1{return_type_}\n',
                                 docstring_,flags=_re.MULTILINE)
        else:
            section_content_regex = fr'{section_regex}(?P<content>.*?)\n *(\n|\Z)'
            adopted_: str = adopted.__doc__ if callable(adopted) else adopted #type: ignore
            try:
                if _re.search(fr'{section_regex}', adopted_, flags=_re.MULTILINE):
                    adopted_ = _re.search(section_content_regex, #type: ignore
                                          adopted_,
                                          flags=_re.MULTILINE|_re.DOTALL).group('content')
            except AttributeError:
                raise RuntimeError(f"Function docstring passed for docstring section '{key}' is invalid:\n{docstring}")

            docstring_indent, adopted_indent = (min([len(line)-len(line.lstrip()) for line in section.split('\n') if line.strip()])
                                                for section in [docstring_, adopted_])
            shift = adopted_indent - docstring_indent
            adopted_content = '\n'.join([(line[shift:] if shift > 0 else
                f'{" "*-shift}{line}') for line in adopted_.split('\n') if line.strip()])

            if _re.search(section_regex, docstring_, flags=_re.MULTILINE):
                docstring_section_content = _re.search(section_content_regex, # type: ignore
                                                       docstring_,
                                                       flags=_re.MULTILINE|_re.DOTALL).group('content')
                a_items, d_items = (_re.findall('^[ ]*([A-Za-z0-9_ ]*?)[ ]*:',content,flags=_re.MULTILINE)
                                    for content in [adopted_content,docstring_section_content])
                for item in a_items:
                    if item in d_items:
                        adopted_content = _re.sub(fr'^([ ]*){item}.*?(?:(\n)\1([A-Za-z0-9_])|([ ]*\Z))',
                                                  r'\1\3',
                                                  adopted_content,
                                                  flags=_re.MULTILINE|_re.DOTALL).rstrip(' \n')
                docstring_ = _re.sub(fr'(^[ ]*{key}\s*\n\s*{"-"*len(key)}\s*\n.*?)\n *(\Z|\n)',
                                     fr'\1\n{adopted_content}\n\2',
                                     docstring_,
                                     flags=_re.MULTILINE|_re.DOTALL)
            else:
                section_title = f'{" "*(shift+docstring_indent)}{key}\n{" "*(shift+docstring_indent)}{"-"*len(key)}\n'
                section_matches = [_re.search(
                    fr'[ ]*{list(sections.keys())[index]}\s*\n\s*{"-"*len(list(sections.keys())[index])}\s*', docstring_)
                    for index in range(i,len(sections))]
                subsequent_section = '\\Z' if not any(section_matches) else \
                                        '\n'+next(item for item in section_matches if item is not None).group(0)
                docstring_ = _re.sub(fr'({subsequent_section})',
                                        fr'\n{section_title}{adopted_content}\n\1',
                                        docstring_)
    return docstring_


def extend_docstring(docstring: _Union[None, str, _Callable] = None,
                     **kwargs) -> _Callable:
    """
    Decorator: Extend the function's docstring.

    Parameters
    ----------
    docstring : str or callable, optional
       Docstring to extend. Defaults to that of decorated function.
    adopted_* : str or callable, optional
       Additional information to insert into/append to respective section.

    Notes
    -----
    Return type will become own type if docstring is callable.

    """
    def _decorator(func):
        if 'adopted_return' not in kwargs: kwargs['adopted_return'] = func
        func.__doc__ = _docstringer(func.__doc__ if docstring is None else docstring,
                                    **kwargs)
        return func
    return _decorator

def pass_on(keyword: str,
            target: _Callable,
            wrapped: _Callable = None) -> _Callable: # type: ignore
    """
    Decorator: Combine signatures of 'wrapped' and 'target' functions and pass on output of 'target' as 'keyword' argument.

    Parameters
    ----------
    keyword : str
       Keyword added to **kwargs of the decorated function
       passing on the result of 'target'.
    target : callable
       The output of this function is passed to the
       decorated function as 'keyword' argument.
    wrapped: callable, optional
        Signature of 'wrapped' function combined with
        that of 'target' yields the overall signature of decorated function.

    Notes
    -----
    The keywords used by 'target' will be prioritized
    if they overlap with those of the decorated function.
    Functions 'target' and 'wrapped' are assumed to only have keyword arguments.

    """

    def decorator(func):
        @_wraps(func)
        def wrapper(*args, **kwargs):
            kw_wrapped     = set(kwargs.keys()) - set(inspect.getfullargspec(target).args)
            kwargs_wrapped = {kw: kwargs.pop(kw) for kw in kw_wrapped}
            kwargs_wrapped[keyword] = target(**kwargs)
            return func(*args, **kwargs_wrapped)
        args_ = [] if wrapped is None or 'self' not in inspect.signature(wrapped).parameters \
                else [inspect.signature(wrapped).parameters['self']]
        for f in [target] if wrapped is None else [target,wrapped]:
            for param in inspect.signature(f).parameters.values():
                if      param.name != keyword \
                    and param.name not in [p.name for p in args_]+['self','cls', 'args', 'kwargs']:
                    args_.append(param.replace(kind=inspect._ParameterKind.KEYWORD_ONLY))
        wrapper.__signature__ = inspect.Signature(parameters=args_,return_annotation=inspect.signature(func).return_annotation)
        return wrapper
    return decorator

def DREAM3D_base_group(fname: _Union[str, _Path]) -> str:
    """
    Determine the base group of a DREAM.3D file.

    The base group is defined as the group (folder) that contains
    a 'SPACING' dataset in a '_SIMPL_GEOMETRY' group.

    Parameters
    ----------
    fname : str or pathlib.Path
        Filename of the DREAM.3D (HDF5) file.

    Returns
    -------
    path : str
        Path to the base group.

    """
    with _h5py.File(_Path(fname).expanduser(),'r') as f:
        base_group = f.visit(lambda path: path.rsplit('/',2)[0] if '_SIMPL_GEOMETRY/SPACING' in path else None)

    if base_group is None:
        raise ValueError(f'could not determine base group in file "{fname}"')

    return base_group

def DREAM3D_cell_data_group(fname: _Union[str, _Path]) -> str:
    """
    Determine the cell data group of a DREAM.3D file.

    The cell data group is defined as the group (folder) that contains
    a dataset in the base group whose length matches the total number
    of points as specified in '_SIMPL_GEOMETRY/DIMENSIONS'.

    Parameters
    ----------
    fname : str or pathlib.Path
        Filename of the DREAM.3D (HDF5) file.

    Returns
    -------
    path : str
        Path to the cell data group.

    """
    base_group = DREAM3D_base_group(fname)
    with _h5py.File(_Path(fname).expanduser(),'r') as f:
        cells = tuple(f['/'.join([base_group,'_SIMPL_GEOMETRY','DIMENSIONS'])][()][::-1])
        cell_data_group = f[base_group].visititems(lambda path,obj: path.split('/')[0] \
                                                   if isinstance(obj,_h5py._hl.dataset.Dataset) and _np.shape(obj)[:-1] == cells \
                                                   else None)

    if cell_data_group is None:
        raise ValueError(f'could not determine cell-data group in file "{fname}/{base_group}"')

    return cell_data_group


def Bravais_to_Miller(*,
                      uvtw: _Optional[_np.ndarray] = None,
                      hkil: _Optional[_np.ndarray] = None) -> _np.ndarray:
    """
    Transform 4 Miller–Bravais indices to 3 Miller indices of crystal direction [uvw] or plane normal (hkl).

    Parameters
    ----------
    uvtw|hkil : numpy.ndarray, shape (...,4)
        Miller–Bravais indices of crystallographic direction [uvtw] or plane normal (hkil).

    Returns
    -------
    uvw|hkl : numpy.ndarray, shape (...,3)
        Miller indices of [uvw] direction or (hkl) plane normal.

    """
    if (uvtw is not None) ^ (hkil is None):
        raise KeyError('specify either "uvtw" or "hkil"')
    axis,basis  = (_np.array(uvtw),_np.array([[1,0,-1,0],
                                              [0,1,-1,0],
                                              [0,0, 0,1]])) \
                  if hkil is None else \
                  (_np.array(hkil),_np.array([[1,0,0,0],
                                              [0,1,0,0],
                                              [0,0,0,1]]))
    return _np.einsum('il,...l',basis,axis)

def Miller_to_Bravais(*,
                      uvw: _Optional[_np.ndarray] = None,
                      hkl: _Optional[_np.ndarray] = None) -> _np.ndarray:
    """
    Transform 3 Miller indices to 4 Miller–Bravais indices of crystal direction [uvtw] or plane normal (hkil).

    Parameters
    ----------
    uvw|hkl : numpy.ndarray, shape (...,3)
        Miller indices of crystallographic direction [uvw] or plane normal (hkl).

    Returns
    -------
    uvtw|hkil : numpy.ndarray, shape (...,4)
        Miller–Bravais indices of [uvtw] direction or (hkil) plane normal.

    """
    if (uvw is not None) ^ (hkl is None):
        raise KeyError('specify either "uvw" or "hkl"')
    axis,basis  = (_np.array(uvw),_np.array([[ 2,-1, 0],
                                             [-1, 2, 0],
                                             [-1,-1, 0],
                                             [ 0, 0, 3]])/3) \
                  if hkl is None else \
                  (_np.array(hkl),_np.array([[ 1, 0, 0],
                                             [ 0, 1, 0],
                                             [-1,-1, 0],
                                             [ 0, 0, 1]]))
    return _np.einsum('il,...l',basis,axis)


def dict_prune(d: _Dict) -> _Dict:
    """
    Recursively remove empty dictionaries.

    Parameters
    ----------
    d : dict
        Dictionary to prune.

    Returns
    -------
    pruned : dict
        Pruned dictionary.

    """
    # https://stackoverflow.com/questions/48151953
    new = {}
    for k,v in d.items():
        if isinstance(v, dict):
            v = dict_prune(v)
        if not isinstance(v,dict) or v != {}:
            new[k] = v

    return new

def dict_flatten(d: _Dict) -> _Dict:
    """
    Recursively remove keys of single-entry dictionaries.

    Parameters
    ----------
    d : dict
        Dictionary to flatten.

    Returns
    -------
    flattened : dict
        Flattened dictionary.

    """
    if isinstance(d,dict) and len(d) == 1:
        entry = d[list(d.keys())[0]]
        new = dict_flatten(entry.copy()) if isinstance(entry,dict) else entry
    else:
        new = {k: (dict_flatten(v) if isinstance(v, dict) else v) for k,v in d.items()}

    return new


####################################################################################################
# Classes
####################################################################################################
class ProgressBar:
    """
    Report progress of an interation as a status bar.

    Works for 0-based loops, ETA is estimated by linear extrapolation.
    """

    def __init__(self,
                 total: int,
                 prefix: str,
                 bar_length: int):
        """
        New progress bar.

        Parameters
        ----------
        total : int
            Total # of iterations.
        prefix : str
            Prefix string.
        bar_length : int
            Character length of bar.

        """
        self.total = total
        self.prefix = prefix
        self.bar_length = bar_length
        self.time_start = self.time_last_update = _datetime.datetime.now()
        self.fraction_last = 0.0

        _sys.stderr.write(f"{self.prefix} {'░'*self.bar_length}   0% ETA n/a")
        _sys.stderr.flush()

    def update(self,
               iteration: int) -> None:

        fraction = (iteration+1) / self.total

        if (filled_length := int(self.bar_length * fraction)) > int(self.bar_length * self.fraction_last) or \
            _datetime.datetime.now() - self.time_last_update > _datetime.timedelta(seconds=10):
            self.time_last_update = _datetime.datetime.now()
            bar = '█' * filled_length + '░' * (self.bar_length - filled_length)
            remaining_time = (_datetime.datetime.now() - self.time_start) \
                           * (self.total - (iteration+1)) / (iteration+1)
            remaining_time -= _datetime.timedelta(microseconds=remaining_time.microseconds)          # remove μs
            _sys.stderr.write(f'\r{self.prefix} {bar} {fraction:>4.0%} ETA {remaining_time}')
            _sys.stderr.flush()

        self.fraction_last = fraction

        if iteration == self.total - 1:
            _sys.stderr.write('\n')
            _sys.stderr.flush()