!-------------------------------------------------------------------------------------------------- !> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating anisotropic brittle damage source mechanism !> @details to be done !-------------------------------------------------------------------------------------------------- submodule (phase:damage) anisobrittle type :: tParameters !< container type for internal constitutive parameters real(pReal) :: & dot_o, & !< opening rate of cleavage planes q !< damage rate sensitivity real(pReal), dimension(:), allocatable :: & s_crit, & !< critical displacement g_crit !< critical load real(pReal), dimension(:,:,:,:), allocatable :: & cleavage_systems integer :: & sum_N_cl !< total number of cleavage planes character(len=pStringLen), allocatable, dimension(:) :: & output end type tParameters type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstances) contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function anisobrittle_init() result(mySources) logical, dimension(:), allocatable :: mySources class(tNode), pointer :: & phases, & phase, & sources, & src integer :: Nmembers,ph integer, dimension(:), allocatable :: N_cl character(len=pStringLen) :: extmsg = '' mySources = source_active('anisobrittle') if(count(mySources) == 0) return print'(/,a)', ' <<<+- phase:damage:anisobrittle init -+>>>' print'(a,i0)', ' # phases: ',count(mySources); flush(IO_STDOUT) phases => config_material%get('phase') allocate(param(phases%length)) do ph = 1, phases%length if(mySources(ph)) then phase => phases%get(ph) sources => phase%get('damage') associate(prm => param(ph)) src => sources%get(1) N_cl = src%get_as1dInt('N_cl',defaultVal=emptyIntArray) prm%sum_N_cl = sum(abs(N_cl)) prm%q = src%get_asFloat('q') prm%dot_o = src%get_asFloat('dot_o') prm%s_crit = src%get_as1dFloat('s_crit', requiredSize=size(N_cl)) prm%g_crit = src%get_as1dFloat('g_crit', requiredSize=size(N_cl)) prm%cleavage_systems = lattice_SchmidMatrix_cleavage(N_cl,phase_lattice(ph),phase_cOverA(ph)) ! expand: family => system prm%s_crit = math_expand(prm%s_crit,N_cl) prm%g_crit = math_expand(prm%g_crit,N_cl) #if defined (__GFORTRAN__) prm%output = output_as1dString(src) #else prm%output = src%get_as1dString('output',defaultVal=emptyStringArray) #endif ! sanity checks if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' q' if (prm%dot_o <= 0.0_pReal) extmsg = trim(extmsg)//' dot_o' if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' g_crit' if (any(prm%s_crit < 0.0_pReal)) extmsg = trim(extmsg)//' s_crit' Nmembers = count(material_phaseID==ph) call phase_allocateState(damageState(ph),Nmembers,1,1,0) damageState(ph)%atol = src%get_asFloat('atol_phi',defaultVal=1.0e-9_pReal) if(any(damageState(ph)%atol < 0.0_pReal)) extmsg = trim(extmsg)//' atol_phi' end associate if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(damage_anisoBrittle)') endif enddo end function anisobrittle_init !-------------------------------------------------------------------------------------------------- !> @brief !-------------------------------------------------------------------------------------------------- module subroutine anisobrittle_dotState(S, ph,en) integer, intent(in) :: & ph,en real(pReal), intent(in), dimension(3,3) :: & S integer :: & i real(pReal) :: & traction_d, traction_t, traction_n, traction_crit associate(prm => param(ph)) damageState(ph)%dotState(1,en) = 0.0_pReal do i = 1, prm%sum_N_cl traction_d = math_tensordot(S,prm%cleavage_systems(1:3,1:3,1,i)) traction_t = math_tensordot(S,prm%cleavage_systems(1:3,1:3,2,i)) traction_n = math_tensordot(S,prm%cleavage_systems(1:3,1:3,3,i)) traction_crit = prm%g_crit(i)*damage_phi(ph,en)**2.0_pReal damageState(ph)%dotState(1,en) = damageState(ph)%dotState(1,en) & + prm%dot_o / prm%s_crit(i) & * ((max(0.0_pReal, abs(traction_d) - traction_crit)/traction_crit)**prm%q + & (max(0.0_pReal, abs(traction_t) - traction_crit)/traction_crit)**prm%q + & (max(0.0_pReal, abs(traction_n) - traction_crit)/traction_crit)**prm%q) enddo end associate end subroutine anisobrittle_dotState !-------------------------------------------------------------------------------------------------- !> @brief writes results to HDF5 output file !-------------------------------------------------------------------------------------------------- module subroutine anisobrittle_results(phase,group) integer, intent(in) :: phase character(len=*), intent(in) :: group integer :: o associate(prm => param(phase), stt => damageState(phase)%state) outputsLoop: do o = 1,size(prm%output) select case(trim(prm%output(o))) case ('f_phi') call results_writeDataset(stt,group,trim(prm%output(o)),'driving force','J/m³') end select enddo outputsLoop end associate end subroutine anisobrittle_results !-------------------------------------------------------------------------------------------------- !> @brief contains the constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- module subroutine damage_anisobrittle_LiAndItsTangent(Ld, dLd_dTstar, S, ph,en) integer, intent(in) :: & ph,en real(pReal), intent(in), dimension(3,3) :: & S real(pReal), intent(out), dimension(3,3) :: & Ld !< damage velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor) integer :: & i, k, l, m, n real(pReal) :: & traction_d, traction_t, traction_n, traction_crit, & udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt Ld = 0.0_pReal dLd_dTstar = 0.0_pReal associate(prm => param(ph)) do i = 1,prm%sum_N_cl traction_crit = prm%g_crit(i)*damage_phi(ph,en)**2.0_pReal traction_d = math_tensordot(S,prm%cleavage_systems(1:3,1:3,1,i)) if (abs(traction_d) > traction_crit + tol_math_check) then udotd = sign(1.0_pReal,traction_d)* prm%dot_o * ((abs(traction_d) - traction_crit)/traction_crit)**prm%q Ld = Ld + udotd*prm%cleavage_systems(1:3,1:3,1,i) dudotd_dt = sign(1.0_pReal,traction_d)*udotd*prm%q / (abs(traction_d) - traction_crit) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) & + dudotd_dt*prm%cleavage_systems(k,l,1,i) * prm%cleavage_systems(m,n,1,i) endif traction_t = math_tensordot(S,prm%cleavage_systems(1:3,1:3,2,i)) if (abs(traction_t) > traction_crit + tol_math_check) then udott = sign(1.0_pReal,traction_t)* prm%dot_o * ((abs(traction_t) - traction_crit)/traction_crit)**prm%q Ld = Ld + udott*prm%cleavage_systems(1:3,1:3,2,i) dudott_dt = sign(1.0_pReal,traction_t)*udott*prm%q / (abs(traction_t) - traction_crit) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) & + dudott_dt*prm%cleavage_systems(k,l,2,i) * prm%cleavage_systems(m,n,2,i) endif traction_n = math_tensordot(S,prm%cleavage_systems(1:3,1:3,3,i)) if (abs(traction_n) > traction_crit + tol_math_check) then udotn = sign(1.0_pReal,traction_n)* prm%dot_o * ((abs(traction_n) - traction_crit)/traction_crit)**prm%q Ld = Ld + udotn*prm%cleavage_systems(1:3,1:3,3,i) dudotn_dt = sign(1.0_pReal,traction_n)*udotn*prm%q / (abs(traction_n) - traction_crit) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) & + dudotn_dt*prm%cleavage_systems(k,l,3,i) * prm%cleavage_systems(m,n,3,i) endif enddo end associate end subroutine damage_anisobrittle_LiAndItsTangent end submodule anisobrittle