! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced Material Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief CPFEM engine !-------------------------------------------------------------------------------------------------- module CPFEM use prec, only: & pReal, & pInt implicit none private real(pReal), parameter, private :: & CPFEM_odd_stress = 1e15_pReal, & !< return value for stress in case of ping pong dummy cycle CPFEM_odd_jacobian = 1e50_pReal !< return value for jacobian in case of ping pong dummy cycle real(pReal), dimension (:,:,:), allocatable, private :: & CPFEM_cs !< Cauchy stress real(pReal), dimension (:,:,:,:), allocatable, private :: & CPFEM_dcsdE !< Cauchy stress tangent real(pReal), dimension (:,:,:,:), allocatable, private :: & CPFEM_dcsdE_knownGood !< known good tangent logical, public, protected :: & CPFEM_init_done = .false., & !< remember whether init has been done already CPFEM_init_inProgress = .false., & !< remember whether first ip is currently performing init CPFEM_calc_done = .false. !< remember whether first ip has already calced the results integer(pInt), parameter, public :: & CPFEM_CALCRESULTS = 2_pInt**0_pInt, & CPFEM_AGERESULTS = 2_pInt**1_pInt, & CPFEM_BACKUPJACOBIAN = 2_pInt**2_pInt, & CPFEM_RESTOREJACOBIAN = 2_pInt**3_pInt, & CPFEM_COLLECT = 2_pInt**4_pInt public :: & CPFEM_general, & CPFEM_initAll contains !-------------------------------------------------------------------------------------------------- !> @brief call (thread safe) all module initializations !-------------------------------------------------------------------------------------------------- subroutine CPFEM_initAll(temperature,el,ip) use prec, only: & prec_init use numerics, only: & numerics_init use debug, only: & debug_init use FEsolving, only: & FE_init use math, only: & math_init use mesh, only: & mesh_init use lattice, only: & lattice_init use material, only: & material_init use constitutive, only: & constitutive_init use crystallite, only: & crystallite_init use homogenization, only: & homogenization_init use IO, only: & IO_init use DAMASK_interface implicit none integer(pInt), intent(in) :: el, & ! FE el number ip ! FE integration point number real(pReal), intent(in) :: temperature ! temperature real(pReal) rnd integer(pInt) i,n ! initialization step (three dimensional stress state check missing?) if (.not. CPFEM_init_done) then call random_number(rnd) do i=1,int(256.0*rnd) n = n+1_pInt ! wasting random amount of time... enddo ! ...to break potential race in multithreading n = n+1_pInt if (.not. CPFEM_init_inProgress) then ! yes my thread won! CPFEM_init_inProgress = .true. #ifdef Spectral call DAMASK_interface_init() ! Spectral solver is interfacing to commandline #endif call prec_init call IO_init call numerics_init call debug_init call math_init call FE_init call mesh_init(ip, el) ! pass on coordinates to alter calcMode of first ip call lattice_init call material_init call constitutive_init call crystallite_init(temperature) ! (have to) use temperature of first ip for whole model call homogenization_init call CPFEM_init #ifndef Spectral call DAMASK_interface_init() ! Spectral solver init is already done #endif CPFEM_init_done = .true. CPFEM_init_inProgress = .false. else ! loser, loser... do while (CPFEM_init_inProgress) enddo endif endif end subroutine CPFEM_initAll !-------------------------------------------------------------------------------------------------- !> @brief allocate the arrays defined in module CPFEM and initialize them !-------------------------------------------------------------------------------------------------- subroutine CPFEM_init use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use prec, only: & pInt use IO, only: & IO_read_realFile,& IO_read_intFile, & IO_timeStamp, & IO_error use numerics, only: & DAMASK_NumThreadsInt use debug, only: & debug_level, & debug_CPFEM, & debug_levelBasic, & debug_levelExtensive use FEsolving, only: & symmetricSolver, & restartRead, & modelName use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase use constitutive, only: & constitutive_state0 use crystallite, only: & crystallite_F0, & crystallite_Fp0, & crystallite_Lp0, & crystallite_dPdF0, & crystallite_Tstar0_v, & crystallite_localPlasticity use homogenization, only: & homogenization_sizeState, & homogenization_state0 implicit none integer(pInt) :: i,j,k,l,m write(6,'(/,a)') ' <<<+- CPFEM init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" ! initialize stress and jacobian to zero allocate(CPFEM_cs(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_cs = 0.0_pReal allocate(CPFEM_dcsdE(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE = 0.0_pReal allocate(CPFEM_dcsdE_knownGood(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE_knownGood = 0.0_pReal ! *** restore the last converged values of each essential variable from the binary file if (restartRead) then if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a)') '<< CPFEM >> restored state variables of last converged step from binary files' !$OMP END CRITICAL (write2out) endif call IO_read_intFile(777,'recordedPhase',modelName,size(material_phase)) read (777,rec=1) material_phase close (777) call IO_read_realFile(777,'convergedF',modelName,size(crystallite_F0)) read (777,rec=1) crystallite_F0 close (777) call IO_read_realFile(777,'convergedFp',modelName,size(crystallite_Fp0)) read (777,rec=1) crystallite_Fp0 close (777) call IO_read_realFile(777,'convergedLp',modelName,size(crystallite_Lp0)) read (777,rec=1) crystallite_Lp0 close (777) call IO_read_realFile(777,'convergeddPdF',modelName,size(crystallite_dPdF0)) read (777,rec=1) crystallite_dPdF0 close (777) call IO_read_realFile(777,'convergedTstar',modelName,size(crystallite_Tstar0_v)) read (777,rec=1) crystallite_Tstar0_v close (777) call IO_read_realFile(777,'convergedStateConst',modelName) m = 0_pInt do i = 1,homogenization_maxNgrains; do j = 1,mesh_maxNips; do k = 1,mesh_NcpElems do l = 1,size(constitutive_state0(i,j,k)%p) m = m+1_pInt read(777,rec=m) constitutive_state0(i,j,k)%p(l) enddo enddo; enddo; enddo close (777) call IO_read_realFile(777,'convergedStateHomog',modelName) m = 0_pInt do k = 1,mesh_NcpElems; do j = 1,mesh_maxNips do l = 1,homogenization_sizeState(j,k) m = m+1_pInt read(777,rec=m) homogenization_state0(j,k)%p(l) enddo enddo; enddo close (777) call IO_read_realFile(777,'convergeddcsdE',modelName,size(CPFEM_dcsdE)) read (777,rec=1) CPFEM_dcsdE close (777) restartRead = .false. endif if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0) then write(6,'(a32,1x,6(i8,1x))') 'CPFEM_cs: ', shape(CPFEM_cs) write(6,'(a32,1x,6(i8,1x))') 'CPFEM_dcsdE: ', shape(CPFEM_dcsdE) write(6,'(a32,1x,6(i8,1x),/)') 'CPFEM_dcsdE_knownGood: ', shape(CPFEM_dcsdE_knownGood) write(6,*) 'symmetricSolver: ', symmetricSolver endif flush(6) end subroutine CPFEM_init !-------------------------------------------------------------------------------------------------- !> @brief perform initialization at first call, update variables and call the actual material model !-------------------------------------------------------------------------------------------------- subroutine CPFEM_general(mode, parallelExecution, ffn, ffn1, temperature, dt, elFE, ip, cauchyStress, jacobian) use numerics, only: & defgradTolerance, & iJacoStiffness use debug, only: & debug_level, & debug_CPFEM, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_stressMaxLocation, & debug_stressMinLocation, & debug_jacobianMaxLocation, & debug_jacobianMinLocation, & debug_stressMax, & debug_stressMin, & debug_jacobianMax, & debug_jacobianMin use FEsolving, only: & outdatedFFN1, & terminallyIll, & cycleCounter, & theInc, & theTime, & theDelta, & FEsolving_execElem, & FEsolving_execIP, & restartWrite use math, only: & math_identity2nd, & math_mul33x33, & math_det33, & math_transpose33, & math_I3, & math_Mandel3333to66, & math_Mandel66to3333, & math_Mandel33to6, & math_Mandel6to33 use mesh, only: & mesh_FEasCP, & mesh_NcpElems, & mesh_maxNips, & mesh_element use material, only: & homogenization_maxNgrains, & microstructure_elemhomo, & material_phase use constitutive, only: & constitutive_state0,constitutive_state use crystallite, only: & crystallite_partionedF,& crystallite_F0, & crystallite_Fp0, & crystallite_Fp, & crystallite_Lp0, & crystallite_Lp, & crystallite_dPdF0, & crystallite_dPdF, & crystallite_Tstar0_v, & crystallite_Tstar_v, & crystallite_temperature use homogenization, only: & homogenization_sizeState, & homogenization_state, & homogenization_state0, & materialpoint_F, & materialpoint_F0, & materialpoint_P, & materialpoint_dPdF, & materialpoint_results, & materialpoint_sizeResults, & materialpoint_stressAndItsTangent, & materialpoint_postResults use IO, only: & IO_write_jobRealFile, & IO_warning use DAMASK_interface implicit none integer(pInt), intent(in) :: elFE, & !< FE element number ip !< integration point number real(pReal), intent(in) :: temperature !< temperature real(pReal), intent(in) :: dt !< time increment real(pReal), dimension (3,3), intent(in) :: ffn, & !< deformation gradient for t=t0 ffn1 !< deformation gradient for t=t1 integer(pInt), intent(in) :: mode !< computation mode 1: regular computation plus aging of results logical, intent(in) :: parallelExecution !< flag indicating parallel computation of requested IPs real(pReal), dimension(6), intent(out), optional :: cauchyStress !< stress vector in Mandel notation real(pReal), dimension(6,6), intent(out), optional :: jacobian !< jacobian in Mandel notation (Consistent tangent dcs/dE) real(pReal) J_inverse, & ! inverse of Jacobian rnd real(pReal), dimension (3,3) :: Kirchhoff, & ! Piola-Kirchhoff stress in Matrix notation cauchyStress33 ! stress vector in Matrix notation real(pReal), dimension (3,3,3,3) :: H_sym, & H, & jacobian3333 ! jacobian in Matrix notation integer(pInt) elCP, & ! crystal plasticity element number i, j, k, l, m, n logical updateJaco ! flag indicating if JAcobian has to be updated elCP = mesh_FEasCP('elem',elFE) !if elCP = 0_pInt return ToDo: needed? if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt & .and. elCP == debug_e .and. ip == debug_i) then !$OMP CRITICAL (write2out) write(6,'(/,a)') '#############################################' write(6,'(a1,a22,1x,i8,a13)') '#','element', elCP, '#' write(6,'(a1,a22,1x,i8,a13)') '#','ip', ip, '#' write(6,'(a1,a22,1x,f15.7,a6)') '#','theTime', theTime, '#' write(6,'(a1,a22,1x,f15.7,a6)') '#','theDelta', theDelta, '#' write(6,'(a1,a22,1x,i8,a13)') '#','theInc', theInc, '#' write(6,'(a1,a22,1x,i8,a13)') '#','cycleCounter', cycleCounter, '#' write(6,'(a1,a22,1x,i8,a13)') '#','computationMode',mode, '#' write(6,'(a,/)') '#############################################' flush (6) !$OMP END CRITICAL (write2out) endif !*** backup or restore jacobian if (iand(mode, CPFEM_BACKUPJACOBIAN) /= 0_pInt) & CPFEM_dcsde_knownGood = CPFEM_dcsde if (iand(mode, CPFEM_RESTOREJACOBIAN) /= 0_pInt) & CPFEM_dcsde = CPFEM_dcsde_knownGood !*** age results and write restart data if requested if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) then crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...) crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity crystallite_dPdF0 = crystallite_dPdF ! crystallite stiffness crystallite_Tstar0_v = crystallite_Tstar_v ! crystallite 2nd Piola Kirchhoff stress forall ( i = 1:homogenization_maxNgrains, & j = 1:mesh_maxNips, & k = 1:mesh_NcpElems ) & constitutive_state0(i,j,k)%p = constitutive_state(i,j,k)%p ! microstructure of crystallites if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a)') '<< CPFEM >> aging states' if (debug_e <= mesh_NcpElems .and. debug_i <= mesh_maxNips) then write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') '<< CPFEM >> aged state of elFE ip grain',& debug_e, debug_i, 1, constitutive_state(1,debug_i,debug_e)%p endif !$OMP END CRITICAL (write2out) endif !$OMP PARALLEL DO do k = 1,mesh_NcpElems do j = 1,mesh_maxNips if (homogenization_sizeState(j,k) > 0_pInt) & homogenization_state0(j,k)%p = homogenization_state(j,k)%p ! internal state of homogenization scheme enddo enddo !$OMP END PARALLEL DO ! * dump the last converged values of each essential variable to a binary file if (restartWrite) then if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files' !$OMP END CRITICAL (write2out) endif call IO_write_jobRealFile(777,'recordedPhase',size(material_phase)) write (777,rec=1) material_phase close (777) call IO_write_jobRealFile(777,'convergedF',size(crystallite_F0)) write (777,rec=1) crystallite_F0 close (777) call IO_write_jobRealFile(777,'convergedFp',size(crystallite_Fp0)) write (777,rec=1) crystallite_Fp0 close (777) call IO_write_jobRealFile(777,'convergedLp',size(crystallite_Lp0)) write (777,rec=1) crystallite_Lp0 close (777) call IO_write_jobRealFile(777,'convergeddPdF',size(crystallite_dPdF0)) write (777,rec=1) crystallite_dPdF0 close (777) call IO_write_jobRealFile(777,'convergedTstar',size(crystallite_Tstar0_v)) write (777,rec=1) crystallite_Tstar0_v close (777) call IO_write_jobRealFile(777,'convergedStateConst') m = 0_pInt do i = 1,homogenization_maxNgrains; do j = 1,mesh_maxNips; do k = 1,mesh_NcpElems do l = 1,size(constitutive_state0(i,j,k)%p) m = m+1_pInt write(777,rec=m) constitutive_state0(i,j,k)%p(l) enddo enddo; enddo; enddo close (777) call IO_write_jobRealFile(777,'convergedStateHomog') m = 0_pInt do k = 1,mesh_NcpElems; do j = 1,mesh_maxNips do l = 1,homogenization_sizeState(j,k) m = m+1_pInt write(777,rec=m) homogenization_state0(j,k)%p(l) enddo enddo; enddo close (777) call IO_write_jobRealFile(777,'convergeddcsdE',size(CPFEM_dcsdE)) write (777,rec=1) CPFEM_dcsdE close (777) endif endif !*** collection of FEM input with returning of randomize odd stress and jacobian !* In case that no parallel execution is required, there is no need to collect FEM input if (.not. parallelExecution) then crystallite_temperature(ip,elCP) = temperature materialpoint_F0(1:3,1:3,ip,elCP) = ffn materialpoint_F(1:3,1:3,ip,elCP) = ffn1 elseif (iand(mode, CPFEM_COLLECT) /= 0_pInt) then call random_number(rnd) if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal crystallite_temperature(ip,elCP) = temperature materialpoint_F0(1:3,1:3,ip,elCP) = ffn materialpoint_F(1:3,1:3,ip,elCP) = ffn1 CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6) CPFEM_calc_done = .false. endif !*** calculation of stress and jacobian if (iand(mode, CPFEM_CALCRESULTS) /= 0_pInt) then !*** deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one if (terminallyIll .or. outdatedFFN1 .or. any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then ! if (.not. terminallyIll .and. .not. outdatedFFN1) then if (any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a,1x,i8,1x,i2)') '<< CPFEM >> OUTDATED at elFE ip',elCP,ip write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 old:',& math_transpose33(materialpoint_F(1:3,1:3,ip,elCP)) write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 now:',math_transpose33(ffn1) !$OMP END CRITICAL (write2out) endif outdatedFFN1 = .true. endif call random_number(rnd) if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal CPFEM_cs(1:6,ip,elCP) = rnd*CPFEM_odd_stress CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian*math_identity2nd(6) !*** deformation gradient is not outdated else updateJaco = mod(cycleCounter,iJacoStiffness) == 0 !* no parallel computation, so we use just one single elFE and ip for computation if (.not. parallelExecution) then FEsolving_execElem(1) = elCP FEsolving_execElem(2) = elCP if (.not. microstructure_elemhomo(mesh_element(4,elCP)) .or. & ! calculate unless homogeneous (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip == 1_pInt)) then ! and then only first ip FEsolving_execIP(1,elCP) = ip FEsolving_execIP(2,elCP) = ip if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a,i8,1x,i2)') '<< CPFEM >> calculation for elFE ip ',elCP,ip !$OMP END CRITICAL (write2out) endif call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent call materialpoint_postResults() ! post results endif !* parallel computation and calulation not yet done elseif (.not. CPFEM_calc_done) then if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a,i8,a,i8)') '<< CPFEM >> calculation for elements ',FEsolving_execElem(1),& ' to ',FEsolving_execElem(2) !$OMP END CRITICAL (write2out) endif call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside) call materialpoint_postResults() ! post results CPFEM_calc_done = .true. endif !* map stress and stiffness (or return odd values if terminally ill) if ( terminallyIll ) then call random_number(rnd) if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6) else if (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip > 1_pInt) then ! me homogenous? --> copy from first ip materialpoint_P(1:3,1:3,ip,elCP) = materialpoint_P(1:3,1:3,1,elCP) materialpoint_F(1:3,1:3,ip,elCP) = materialpoint_F(1:3,1:3,1,elCP) materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,elCP) = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,elCP) materialpoint_results(1:materialpoint_sizeResults,ip,elCP) = & materialpoint_results(1:materialpoint_sizeResults,1,elCP) endif ! translate from P to CS Kirchhoff = math_mul33x33(materialpoint_P(1:3,1:3,ip,elCP), math_transpose33(materialpoint_F(1:3,1:3,ip,elCP))) J_inverse = 1.0_pReal / math_det33(materialpoint_F(1:3,1:3,ip,elCP)) CPFEM_cs(1:6,ip,elCP) = math_Mandel33to6(J_inverse * Kirchhoff) ! translate from dP/dF to dCS/dE H = 0.0_pReal do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3 H(i,j,k,l) = H(i,j,k,l) + & materialpoint_F(j,m,ip,elCP) * & materialpoint_F(l,n,ip,elCP) * & materialpoint_dPdF(i,m,k,n,ip,elCP) - & math_I3(j,l) * materialpoint_F(i,m,ip,elCP) * materialpoint_P(k,m,ip,elCP) + & 0.5_pReal * (math_I3(i,k) * Kirchhoff(j,l) + math_I3(j,l) * Kirchhoff(i,k) + & math_I3(i,l) * Kirchhoff(j,k) + math_I3(j,k) * Kirchhoff(i,l)) enddo; enddo; enddo; enddo; enddo; enddo forall(i=1:3, j=1:3,k=1:3,l=1:3) & H_sym(i,j,k,l) = 0.25_pReal * (H(i,j,k,l) + H(j,i,k,l) + H(i,j,l,k) + H(j,i,l,k)) CPFEM_dcsde(1:6,1:6,ip,elCP) = math_Mandel3333to66(J_inverse * H_sym) endif endif !* remember extreme values of stress and jacobian cauchyStress33 = math_Mandel6to33(CPFEM_cs(1:6,ip,elCP)) if (maxval(cauchyStress33) > debug_stressMax) then debug_stressMaxLocation = [elCP, ip] debug_stressMax = maxval(cauchyStress33) endif if (minval(cauchyStress33) < debug_stressMin) then debug_stressMinLocation = [elCP, ip] debug_stressMin = minval(cauchyStress33) endif jacobian3333 = math_Mandel66to3333(CPFEM_dcsdE(1:6,1:6,ip,elCP)) if (maxval(jacobian3333) > debug_jacobianMax) then debug_jacobianMaxLocation = [elCP, ip] debug_jacobianMax = maxval(jacobian3333) endif if (minval(jacobian3333) < debug_jacobianMin) then debug_jacobianMinLocation = [elCP, ip] debug_jacobianMin = minval(jacobian3333) endif !* report stress and stiffness if ((iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) & .and. ((debug_e == elCP .and. debug_i == ip) & .or. .not. iand(debug_level(debug_CPFEM), debug_levelSelective) /= 0_pInt)) then !$OMP CRITICAL (write2out) write(6,'(a,i8,1x,i2,/,12x,6(f10.3,1x)/)') '<< CPFEM >> stress/MPa at elFE ip ', & elCP, ip, CPFEM_cs(1:6,ip,elCP)/1.0e6_pReal write(6,'(a,i8,1x,i2,/,6(12x,6(f10.3,1x)/))') '<< CPFEM >> Jacobian/GPa at elFE ip ', & elCP, ip, transpose(CPFEM_dcsdE(1:6,1:6,ip,elCP))/1.0e9_pReal flush(6) !$OMP END CRITICAL (write2out) endif endif !*** warn if stiffness close to zero if (all(abs(CPFEM_dcsdE(1:6,1:6,ip,elCP)) < 1e-10_pReal)) call IO_warning(601,elCP,ip) !*** copy to output if required (FEM solver) if(present(cauchyStress)) cauchyStress = CPFEM_cs(1:6,ip,elCP) if(present(jacobian)) jacobian = CPFEM_dcsdE(1:6,1:6,ip,elCP) end subroutine CPFEM_general end module CPFEM