Calculation of Mixed Boundary Conditions

M. Diehl

August 31, 2011

1 Residuum Method

Make step of $\partial \mathbf{P}$ from current situation towards \mathbf{P}_{wish} (leaving free components as they are). This results in $d\mathbf{F} = \frac{\partial \mathbf{F}}{\partial \mathbf{P}} \cdot d\mathbf{P}$ which has potentially non-zero components at prescribed F_{ij} . Isolate those as residuum \mathbf{R} . Use $\frac{\partial \mathbf{P}}{\partial \mathbf{F}} \cdot \mathbf{R}$ to calculate change of $d\mathbf{P}$ to kill \mathbf{R} . Adjust initial $d\mathbf{P}$ by change and calculate $d\mathbf{F} = \frac{\partial \mathbf{F}}{\partial \mathbf{P}} \cdot d\mathbf{P}_{corr}$ which should be now free of fixed components. Check wether $d\mathbf{F} = \mathbf{R} \cdot \mathbf{U}$ has $\mathbf{R} \approx \mathbf{I}$

2 Reduction Method

Calculate $\frac{\partial F}{\partial P}$ and convert into 9x9 matrix. Convert ΔP and ΔF into an vector of dimension 9. Remove all entries from the stiffness matrix where F is prescribed (and where ΔP is undefined). Invert the reduced matrix and fill the removed entries with 0. For a linear behavior, $\frac{\partial F}{\partial P_{red}} : \Delta P$ gives the exact change of ΔF .