\documentclass[12pt,numbers,sort&compress]{article} %% Use the option review to obtain double line spacing %% \documentclass[authoryear,preprint,review,12pt]{elsarticle} %% Use the options 1p,twocolumn; 3p; 3p,twocolumn; 5p; or 5p,twocolumn %% for a journal layout: %% \documentclass[final,1p,times]{elsarticle} %% \documentclass[final,1p,times,twocolumn]{elsarticle} %% \documentclass[final,3p,times]{elsarticle} %% \documentclass[final,3p,times,twocolumn]{elsarticle} %% \documentclass[final,5p,times]{elsarticle} %% \documentclass[final,5p,times,twocolumn]{elsarticle} %% if you use PostScript figures in your article %% use the graphics package for simple commands %% \usepackage{graphics} %% or use the graphicx package for more complicated commands %% \usepackage{graphicx} %% or use the epsfig package if you prefer to use the old commands %% \usepackage{epsfig} %% The amssymb package provides various useful mathematical symbols \usepackage[usenames,dvipsnames,pdftex]{color} \usepackage{amsmath,amssymb,amsfonts} \usepackage{siunitx} %\usepackage{subeqnarray} \usepackage[hang]{subfigure} \usepackage{verbatim} \usepackage{bm} \usepackage{tikz} \usetikzlibrary{arrows} \usepackage{booktabs} \usepackage{graphicx} \newcommand{\pathToFigures}{./figures} \graphicspath{{\pathToFigures/}} \DeclareGraphicsExtensions{.pdf,.png} \usepackage[pdftex, % hyper-references for pdftex bookmarksnumbered=true,% % generate bookmarks with numbers pagebackref=true,% % generate backref in biblio colorlinks=true,% ]{hyperref}% %% The amsthm package provides extended theorem environments %% \usepackage{amsthm} %% The lineno packages adds line numbers. Start line numbering with %% \begin{linenumbers}, end it with \end{linenumbers}. Or switch it on %% for the whole article with \linenumbers. %% \usepackage{lineno} \newlength{\diagramsize} \setlength{\diagramsize}{0.4\textwidth} \newcommand{\question}[1]{\textcolor{Red}{#1}} \newcommand{\note}[1]{\textcolor{CornflowerBlue}{#1}} \newcommand{\term}[1]{\textsc{#1}} \newcommand{\eref}[1]{Eq.~\eqref{#1}} \newcommand{\Eref}[1]{Eq.~\eqref{#1}} \newcommand{\erefs}[1]{Eqs.~\eqref{#1}} \newcommand{\Erefs}[1]{Eqs.~\eqref{#1}} \newcommand{\fref}[1]{Fig.~\ref{#1}} \newcommand{\Fref}[1]{Fig.~\ref{#1}} \newcommand{\frefs}[1]{Figs.~\ref{#1}} \newcommand{\Frefs}[1]{Figs.~\ref{#1}} \newcommand{\tref}[1]{Tab.~\ref{#1}} \newcommand{\Tref}[1]{Tab.~\ref{#1}} \newcommand{\trefs}[1]{Tabs.~\ref{#1}} \newcommand{\Trefs}[1]{Tabs.~\ref{#1}} \newcommand{\ie}{\textit{i.e.}} \newcommand{\eg}{\textit{e.g.}} \newcommand{\cf}{\textit{cf.}} \newcommand{\Euler}{\textsc{Euler}} \newcommand{\Gauss}{\textsc{Gauss}} \newcommand{\kB}{\ensuremath{k_\text{B}}} \newcommand{\transpose}[1]{\ensuremath{{#1}^{\mathrm T}}} \newcommand{\inverse}[1]{\ensuremath{{#1}^{-1}}} \newcommand{\invtranspose}[1]{\ensuremath{{#1}^{\mathrm{-T}}}} \newcommand{\sign}[1]{\ensuremath{\operatorname{sgn}\left({#1}\right)}} \newcommand{\grad}[1][]{\ensuremath{\operatorname{grad}{#1}}} \newcommand{\Grad}[1][]{\ensuremath{\operatorname{Grad}{#1}}} \newcommand{\divergence}[1][]{\ensuremath{\operatorname{div}{#1}}} \newcommand{\Divergence}[1][]{\ensuremath{\operatorname{Div}{#1}}} \newcommand{\totalder}[2]{\ensuremath{\frac{\inc{#1}}{\inc{#2}}}} \newcommand{\partialder}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}} \newcommand{\inc}[1]{\ensuremath{\text d{#1}}} \newcommand{\abs}[1]{\ensuremath{\left|{#1}\right|}} \newcommand{\norm}[1]{\ensuremath{\left|\left|{#1}\right|\right|}} \newcommand{\avg}[1]{\ensuremath{\bar{#1}}} \newcommand{\fluct}[1]{\ensuremath{\tilde{#1}}} \newcommand{\FT}[1]{\ensuremath{\hat{#1}}} \newcommand{\domain}[1]{\ensuremath{\mathcal{#1}}} \newcommand{\tnsrfour}[1]{\ensuremath{\mathbb{#1}}} \newcommand{\tnsr}[1]{\ensuremath{\bm{#1}}} \newcommand{\vctr}[1]{\ensuremath{\bm{#1}}} \newcommand{\eyetwo}{\ensuremath{\tnsr I}} \newcommand{\eyefour}{\ensuremath{\tnsrfour I}} \newcommand{\stiffness}{\ensuremath{\tnsrfour D}} \newcommand{\refStiffness}{\ensuremath{\avg{\tnsrfour D}}} \newcommand{\fPK}{\ensuremath{\tnsr P}} \newcommand{\sPK}{\ensuremath{\tnsr S}} \newcommand{\F}[1][]{\ensuremath{\tnsr F^{#1}}} \newcommand{\Favg}{\ensuremath{\avg{\F}}} \newcommand{\Ffluct}{\ensuremath{\fluct{\F}}} \newcommand{\Fp}[1][]{\ensuremath{\tnsr F_\text{p}^{#1}}} \newcommand{\Fe}[1][]{\ensuremath{\tnsr F_\text{e}^{#1}}} \newcommand{\Lp}{\ensuremath{\tnsr L_\text{p}}} \newcommand{\Q}[1]{\ensuremath{\tnsr Q^{(#1)}}} \newcommand{\x}[2][]{\ensuremath{\vctr x^{(#2)}_\text{#1}}} \newcommand{\dg}[2][]{\ensuremath{\Delta\vctr g^{(#2)}_\text{#1}}} \newcommand{\g}[1][]{\ensuremath{\vctr g_\text{#1}}} \newcommand{\A}[2][]{\ensuremath{A^{(#2)}_\text{#1}}} \newcommand{\N}[2]{\ensuremath{\varrho^{(#1)}_\text{#2}}} \newcommand{\Burgers}[1]{\ensuremath{\vctr s^{(#1)}}} \newcommand{\n}[1]{\ensuremath{\vctr n^{(#1)}}} \newcommand{\m}[2]{\ensuremath{\vctr m^{(#1)}_{#2}}} \newcommand{\ld}[1]{\ensuremath{\vctr p^{(#1)}}} \newcommand{\velocity}[2]{\ensuremath{v^{(#1)}_\text{#2}}} \newcommand{\avgvelocity}[2]{\ensuremath{{\bar v}^{(#1)}_ \text{#2}}} \newcommand{\flux}[2]{\ensuremath{\vctr f^{(#1)}_ \text{#2}}} \newcommand{\averageflux}[2]{\ensuremath{\bar{\vctr f}^{(#1)}_ \text{#2}}} \newcommand{\interfaceflux}[2]{\ensuremath{\tilde{\vctr f}^{(#1)}_ \text{#2}}} \newcommand{\transmissivity}[1]{\ensuremath{\chi^{(#1)}}} \newcommand{\galpha}{\ensuremath{\gamma^{(\alpha)}}} \newcommand{\dotgalpha}{\ensuremath{\dot{\gamma}^{(\alpha)}}} \newcommand{\taualpha}{\ensuremath{\tau^{(\alpha)}}} \newcommand{\taualphamax}{\ensuremath{\hat\tau^{(\alpha)}}} \newcommand{\density}[2]{\ensuremath{\varrho^{(#1)}_ \text{#2}}} \newcommand{\densityfunc}[2]{\ensuremath{{\tilde\varrho}^{(#1)}_ \text{#2}}} \newcommand{\avgdensity}[2]{\ensuremath{{\bar\varrho}^{(#1)}_ \text{#2}}} \newcommand{\dotdensity}[2]{\ensuremath{\dot{\varrho}^{(#1)}_ \text{#2}}} \newcommand{\densityexcess}[2]{\ensuremath{\Delta\varrho^{(#1)}_ \text{#2}}} \newcommand{\cs}[2][]{\ensuremath{\sigma^{(#1)}_ \text{#2}}} %% Title, authors and addresses %% use the tnoteref command within \title for footnotes; %% use the tnotetext command for theassociated footnote; %% use the fnref command within \author or \address for footnotes; %% use the fntext command for theassociated footnote; %% use the corref command within \author for corresponding author footnotes; %% use the cortext command for theassociated footnote; %% use the ead command for the email address, %% and the form \ead[url] for the home page: %% \title{Title\tnoteref{label1}} %% \tnotetext[label1]{} %% \author{Name\corref{cor1}\fnref{label2}} %% \ead{email address} %% \ead[url]{home page} %% \fntext[label2]{} %% \cortext[cor1]{} %% \address{Address\fnref{label3}} %% \fntext[label3]{} \title{Fourier Transforms} %% use optional labels to link authors explicitly to addresses: %% \author[label1,label2]{} %% \address[label1]{} %% \address[label2]{} \author{M.~Diehl} %% \linenumbers % main text \begin{document} \maketitle % ---------------------------------------------------------------------------------------------------------------------------- \section{Discrete vs. continuous FT} % ---------------------------------------------------------------------------------------------------------------------------- continuous Fourier transform \begin{equation} \hat{f}(k) = \int \limits_{-\pi}^{\pi} f(x) \cdot e^{-2\pi i k x} \inc x \end{equation} discrete Fourier transform \begin{align} \hat{f}_k &= \frac{1}{d} \sum\limits_{n=0}^{N-1} f \left( x = \frac{n}{N}d \right) \cdot e^{\left(-2 \pi i \cdot \frac{k}{d} \cdot \frac{n}{N} \cdot d \right)} \cdot \frac{d}{N}\\ &= \frac{1}{N} \sum \limits_{n=0}^{N-1} f \left( x = \frac{n}{N} d \right) \cdot e^{-\frac{2 \pi i}{N} \cdot k \cdot n} \end{align} % ---------------------------------------------------------------------------------------------------------------------------- \section{Differentation} % ---------------------------------------------------------------------------------------------------------------------------- Expression in frequency and angular frequency \begin{align} \hat{f}(k) &= \frac{1}{d} \int \limits_0^d f(x) e^{\frac{-2 \pi i}{d} k x}\\ &= \frac{1}{d} \int \limits_0^d f(x) e^{-2 \pi i \xi x} \inc x \end{align} \begin{align} \hat{f}'&= \frac{\partial}{\partial x} \left( \int \limits_{-\infty }^{\infty} \hat{f}(x) \cdot e^{i \xi x} \inc k \right)\\ &= \int \limits_{-\infty}^{\infty} \frac{\partial}{\partial x} \left( \hat{f}(x) \cdot e^{i \xi x} \right) \inc k\\ &= \int \limits_{-\infty}^{\infty} i \xi \cdot \hat{f}(x) \cdot e^{i \xi x} \inc k \end{align} \section{Transform} example with $N=4$ and $x = \mathrm{sin}\left( \frac{n}{N} \cdot 2 \pi \right)$ \begin{align} X_k &= \sum \limits_{n=0}^{N-1} x_n \cdot e ^{- \frac{2 \pi i }{N} \cdot k \cdot n};~~~k = 0;1;..;N-1\\ &= \sum \limits_{n=0}^{N-1} x_n \cdot \left(\mathrm{cos}\left(- \frac{2 \pi}{N}\cdot k \cdot n \right) + i\cdot \mathrm{sin}\left(- \frac{2 \pi}{N} \cdot k \cdot n\right) \right)\\ X_0 &= \sum \limits_{n=0}^{N-1} x_n e ^\\ &= 0 + 1 + 0 +(-1) = 0 \\ X_1 &= \sum \limits_{n=0}^{N-1} x_n e^{-i \frac{2\pi}{N} \cdot 1 \cdot n} = 0 + e ^ {-i \frac{2\pi}{N} \cdot 1 \cdot 1} + 0 +e ^ {-i \frac{2\pi}{N} \cdot 1 \cdot 3}\\ &= 0 + (- 2i)\\ X_2 &= 0 + 0i\\ X_3 &= 0 + 2i \end{align} $X_2$ is Nyquist frequency and has only a real part, $X_3$ is conjugate complex of $X_1$ for real only input. \section{Inverse Transform} \begin{align} x_n &= \frac{1}{N} \sum \limits_{k=0}^{N-1} X_k e^{\frac{2\pi i}{N} \cdot k \cdot n}\\ x_0 &= \frac{1}{4}\left(0 - 2ie^0 + 0 + 2ie^0 \right) = 0\\ x_1 &= \frac{1}{4}\left(0 - 2ie^{\frac{2\pi i}{4}\cdot 1 \cdot 1} + 0 + 2ie^{\frac{2\pi i}{4}\cdot 3 \cdot 1} \right) = 1\\ x_2 &= 0\\ x_1 &= -1 \end{align} \end{document} \endinput