#!/usr/bin/env python2.7 # -*- coding: UTF-8 no BOM -*- import os,sys,math import numpy as np from optparse import OptionParser from scipy import ndimage import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog [option(s)] [geomfile(s)]', description = """ Smoothens out interface roughness by simulated curvature flow. This is achieved by the diffusion of each initially sharply bounded grain volume within the periodic domain up to a given distance 'd' voxels. The final geometry is assembled by selecting at each voxel that grain index for which the concentration remains largest. """, version = scriptID) parser.add_option('-d', '--distance', dest = 'd', type = 'float', metavar = 'float', help = 'diffusion distance in voxels [%default]') parser.add_option('-N', '--iterations', dest = 'N', type = 'int', metavar = 'int', help = 'curvature flow iterations [%default]') parser.add_option('-i', '--immutable', action = 'extend', dest = 'immutable', metavar = '', help = 'list of immutable microstructure indices') parser.add_option('-r', '--renumber', dest = 'renumber', action='store_true', help = 'output consecutive microstructure indices') parser.add_option('--ndimage', dest = 'ndimage', action='store_true', help = 'use ndimage.gaussian_filter in lieu of explicit FFT') parser.set_defaults(d = 1, N = 1, immutable = [], renumber = False, ndimage = False, ) (options, filenames) = parser.parse_args() options.immutable = map(int,options.immutable) getInterfaceEnergy = lambda A,B: (A*B != 0)*(A != B)*1.0 # 1.0 if A & B are distinct & nonzero, 0.0 otherwise struc = ndimage.generate_binary_structure(3,1) # 3D von Neumann neighborhood # --- loop over input files ----------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, buffered = False, labeled = False) except: continue damask.util.report(scriptName,name) # --- interpret header ---------------------------------------------------------------------------- table.head_read() info,extra_header = table.head_getGeom() damask.util.croak(['grid a b c: {}'.format(' x '.join(map(str,info['grid']))), 'size x y z: {}'.format(' x '.join(map(str,info['size']))), 'origin x y z: {}'.format(' : '.join(map(str,info['origin']))), 'homogenization: {}'.format(info['homogenization']), 'microstructures: {}'.format(info['microstructures']), ]) errors = [] if np.any(info['grid'] < 1): errors.append('invalid grid a b c.') if np.any(info['size'] <= 0.0): errors.append('invalid size x y z.') if errors != []: damask.util.croak(errors) table.close(dismiss = True) continue # --- read data ----------------------------------------------------------------------------------- microstructure = np.tile(table.microstructure_read(info['grid']).reshape(info['grid'],order='F'), np.where(info['grid'] == 1, 2,1)) # make one copy along dimensions with grid == 1 grid = np.array(microstructure.shape) # --- initialize support data --------------------------------------------------------------------- # store a copy the initial microstructure to find locations of immutable indices microstructure_original = np.copy(microstructure) if not options.ndimage: X,Y,Z = np.mgrid[0:grid[0],0:grid[1],0:grid[2]] # Calculates gaussian weights for simulating 3d diffusion gauss = np.exp(-(X*X + Y*Y + Z*Z)/(2.0*options.d*options.d)) \ /math.pow(2.0*np.pi*options.d*options.d,(3.0 - np.count_nonzero(info['grid'] == 1))/2.) gauss[:,:,:grid[2]/2:-1] = gauss[:,:,1:(grid[2]+1)/2] # trying to cope with uneven (odd) grid size gauss[:,:grid[1]/2:-1,:] = gauss[:,1:(grid[1]+1)/2,:] gauss[:grid[0]/2:-1,:,:] = gauss[1:(grid[0]+1)/2,:,:] gauss = np.fft.rfftn(gauss) for smoothIter in range(options.N): interfaceEnergy = np.zeros(microstructure.shape) for i in (-1,0,1): for j in (-1,0,1): for k in (-1,0,1): # assign interfacial energy to all voxels that have a differing neighbor (in Moore neighborhood) interfaceEnergy = np.maximum(interfaceEnergy, getInterfaceEnergy(microstructure,np.roll(np.roll(np.roll( microstructure,i,axis=0), j,axis=1), k,axis=2))) # periodically extend interfacial energy array by half a grid size in positive and negative directions periodic_interfaceEnergy = np.tile(interfaceEnergy,(3,3,3))[grid[0]/2:-grid[0]/2, grid[1]/2:-grid[1]/2, grid[2]/2:-grid[2]/2] # transform bulk volume (i.e. where interfacial energy remained zero), store index of closest boundary voxel index = ndimage.morphology.distance_transform_edt(periodic_interfaceEnergy == 0., return_distances = False, return_indices = True) # want array index of nearest voxel on periodically extended boundary periodic_bulkEnergy = periodic_interfaceEnergy[index[0], index[1], index[2]].reshape(2*grid) # fill bulk with energy of nearest interface if options.ndimage: periodic_diffusedEnergy = ndimage.gaussian_filter( np.where(ndimage.morphology.binary_dilation(periodic_interfaceEnergy > 0., structure = struc, iterations = int(round(options.d*2.)), # fat boundary ), periodic_bulkEnergy, # ...and zero everywhere else 0.), sigma = options.d) else: diffusedEnergy = np.fft.irfftn(np.fft.rfftn( np.where( ndimage.morphology.binary_dilation(interfaceEnergy > 0., structure = struc, iterations = int(round(options.d*2.))),# fat boundary periodic_bulkEnergy[grid[0]/2:-grid[0]/2, # retain filled energy on fat boundary... grid[1]/2:-grid[1]/2, grid[2]/2:-grid[2]/2], # ...and zero everywhere else 0.))*gauss) periodic_diffusedEnergy = np.tile(diffusedEnergy,(3,3,3))[grid[0]/2:-grid[0]/2, grid[1]/2:-grid[1]/2, grid[2]/2:-grid[2]/2] # periodically extend the smoothed bulk energy # transform voxels close to interface region index = ndimage.morphology.distance_transform_edt(periodic_diffusedEnergy >= 0.5*np.amax(periodic_diffusedEnergy), return_distances = False, return_indices = True) # want index of closest bulk grain periodic_microstructure = np.tile(microstructure,(3,3,3))[grid[0]/2:-grid[0]/2, grid[1]/2:-grid[1]/2, grid[2]/2:-grid[2]/2] # periodically extend the microstructure microstructure = periodic_microstructure[index[0], index[1], index[2]].reshape(2*grid)[grid[0]/2:-grid[0]/2, grid[1]/2:-grid[1]/2, grid[2]/2:-grid[2]/2] # extent grains into interface region immutable = np.zeros(microstructure.shape, dtype=bool) # find locations where immutable microstructures have been or are now for micro in options.immutable: immutable += np.logical_or(microstructure == micro, microstructure_original == micro) # undo any changes involving immutable microstructures microstructure = np.where(immutable, microstructure_original,microstructure) # --- renumber to sequence 1...Ngrains if requested ----------------------------------------------- # http://stackoverflow.com/questions/10741346/np-frequency-counts-for-unique-values-in-an-array if options.renumber: newID = 0 for microstructureID,count in enumerate(np.bincount(microstructure.flatten())): if count != 0: newID += 1 microstructure = np.where(microstructure == microstructureID, newID, microstructure) newInfo = {'microstructures': 0,} newInfo['microstructures'] = microstructure.max() # --- report -------------------------------------------------------------------------------------- remarks = [] if newInfo['microstructures'] != info['microstructures']: remarks.append('--> microstructures: {}'.format(newInfo['microstructures'])) if remarks != []: damask.util.croak(remarks) # --- write header -------------------------------------------------------------------------------- table.labels_clear() table.info_clear() table.info_append(extra_header+[ scriptID + ' ' + ' '.join(sys.argv[1:]), "grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']), "size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']), "origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']), "homogenization\t{homog}".format(homog=info['homogenization']), "microstructures\t{microstructures}".format(microstructures=newInfo['microstructures']), ]) table.head_write() # --- write microstructure information ------------------------------------------------------------ formatwidth = int(math.floor(math.log10(microstructure.max())+1)) table.data = microstructure[::1 if info['grid'][0]>1 else 2, ::1 if info['grid'][1]>1 else 2, ::1 if info['grid'][2]>1 else 2,].\ reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose() table.data_writeArray('%{}i'.format(formatwidth),delimiter = ' ') # --- output finalization -------------------------------------------------------------------------- table.close()