import pytest import numpy as np from damask import tensor def deviatoric(T): return T - spherical(T) def eigenvalues(T_sym): return np.linalg.eigvalsh(symmetric(T_sym)) def eigenvectors(T_sym,RHS=False): (u,v) = np.linalg.eigh(symmetric(T_sym)) if RHS: if np.linalg.det(v) < 0.0: v[:,2] *= -1.0 return v def symmetric(T): return (T+transpose(T))*0.5 def transpose(T): return T.T def spherical(T,tensor=True): sph = np.trace(T)/3.0 return sph if not tensor else np.eye(3)*sph class TestTensor: n = 1000 c = np.random.randint(n) @pytest.mark.parametrize('vectorized,single',[(tensor.deviatoric, deviatoric), (tensor.eigenvalues, eigenvalues), (tensor.eigenvectors, eigenvectors), (tensor.symmetric, symmetric), (tensor.transpose, transpose), (tensor.spherical, spherical), ]) def test_vectorize_1_arg(self,vectorized,single): epsilon = np.random.rand(self.n,3,3) epsilon_vec = np.reshape(epsilon,(self.n//10,10,3,3)) for i,v in enumerate(np.reshape(vectorized(epsilon_vec),vectorized(epsilon).shape)): assert np.allclose(single(epsilon[i]),v) def test_symmetric(self): """Ensure that a symmetric tensor is half of the sum of a tensor and its transpose.""" x = np.random.rand(self.n,3,3) assert np.allclose(tensor.symmetric(x)*2.0,tensor.transpose(x)+x) def test_transpose(self): """Ensure that a symmetric tensor equals its transpose.""" x = tensor.symmetric(np.random.rand(self.n,3,3)) assert np.allclose(tensor.transpose(x),x) def test_eigenvalues(self): """Ensure that the characteristic polynomial can be solved.""" A = tensor.symmetric(np.random.rand(self.n,3,3)) lambd = tensor.eigenvalues(A) s = np.random.randint(self.n) for i in range(3): assert np.allclose(np.linalg.det(A[s]-lambd[s,i]*np.eye(3)),.0) def test_eigenvalues_and_vectors(self): """Ensure that eigenvalues and -vectors are the solution to the characteristic polynomial.""" A = tensor.symmetric(np.random.rand(self.n,3,3)) lambd = tensor.eigenvalues(A) x = tensor.eigenvectors(A) s = np.random.randint(self.n) for i in range(3): assert np.allclose(np.dot(A[s]-lambd[s,i]*np.eye(3),x[s,:,i]),.0) def test_eigenvectors_RHS(self): """Ensure that RHS coordinate system does only change sign of determinant.""" A = tensor.symmetric(np.random.rand(self.n,3,3)) LRHS = np.linalg.det(tensor.eigenvectors(A,RHS=False)) RHS = np.linalg.det(tensor.eigenvectors(A,RHS=True)) assert np.allclose(np.abs(LRHS),RHS) def test_spherical_deviatoric_part(self): """Ensure that full tensor is sum of spherical and deviatoric part.""" x = np.random.rand(self.n,3,3) assert np.allclose(tensor.spherical(x,True) + tensor.deviatoric(x), x) def test_spherical_mapping(self): """Ensure that mapping to tensor is correct.""" x = np.random.rand(self.n,3,3) tnsr = tensor.spherical(x,True) scalar = tensor.spherical(x,False) assert np.allclose(np.linalg.det(tnsr), scalar**3.0) def test_deviatoric(self): I_n = np.broadcast_to(np.eye(3),(self.n,3,3)) r = np.logical_not(I_n)*np.random.rand(self.n,3,3) assert np.allclose(tensor.deviatoric(I_n+r),r)