!############################################################## MODULE CPFEM !############################################################## ! *** CPFEM engine *** ! use prec, only: pReal,pInt implicit none ! ! **************************************************************** ! *** General variables for the material behaviour calculation *** ! **************************************************************** real(pReal), dimension (:,:), allocatable :: CPFEM_Temperature real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn_bar !average FFN per IP real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_ffn !individual FFN per grain real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn1_bar !average FFN1 per IP real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_ffn1 !individual FFN1 per grain real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_PK1_bar !average PK1 per IP real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_PK1 !individual PK1 per grain real(pReal), dimension (:,:,:,:,:,:), allocatable :: CPFEM_dPdF_bar !average dPdF per IP real(pReal), dimension (:,:,:,:,:,:), allocatable :: CPFEM_dPdF_bar_old !old average dPdF per IP real(pReal), dimension (:,:,:,:,:,:,:),allocatable :: CPFEM_dPdF !individual dPdF per grain real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_bar real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jaco_bar real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jaco_knownGood real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_results real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Lp_old real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Lp_new real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_old real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_new real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fe1 real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_Tstar_v real(pReal), parameter :: CPFEM_odd_stress = 1e15_pReal, CPFEM_odd_jacobian = 1e50_pReal integer(pInt) :: CPFEM_Nresults = 4_pInt ! three Euler angles plus volume fraction logical :: CPFEM_init_done = .false. ! remember whether init has been done already logical :: CPFEM_calc_done = .false. ! remember whether first IP has already calced the results logical :: CPFEM_results_aged = .false. ! remember whether results have been aged at inc start ! *** Solution at single crystallite level *** ! logical, dimension (:,:,:),allocatable :: crystallite_converged !individual covergence flag per grain ! CONTAINS ! !********************************************************* !*** allocate the arrays defined in module CPFEM *** !*** and initialize them *** !********************************************************* SUBROUTINE CPFEM_init(Temperature) ! use prec use math, only: math_EulertoR, math_I3, math_identity2nd use mesh use constitutive ! implicit none ! real(pReal) Temperature integer(pInt) e,i,g ! ! *** mpie.marc parameters *** allocate(CPFEM_Temperature(mesh_maxNips,mesh_NcpElems)) ; CPFEM_Temperature = Temperature allocate(CPFEM_ffn_bar(3,3,mesh_maxNips,mesh_NcpElems)) forall(e=1:mesh_NcpElems,i=1:mesh_maxNips) CPFEM_ffn_bar(:,:,i,e) = math_I3 allocate(CPFEM_ffn(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) forall(g=1:constitutive_maxNgrains,e=1:mesh_NcpElems,i=1:mesh_maxNips) CPFEM_ffn(:,:,g,i,e) = math_I3 allocate(CPFEM_ffn1_bar(3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1_bar = CPFEM_ffn_bar allocate(CPFEM_ffn1(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1 = CPFEM_ffn allocate(CPFEM_PK1_bar(3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_PK1_bar = 0.0_pReal allocate(CPFEM_PK1(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_PK1 = 0.0_pReal allocate(CPFEM_dPdF_bar(3,3,3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dPdF_bar = 0.0_pReal allocate(CPFEM_dPdF_bar_old(3,3,3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dPdF_bar_old = 0.0_pReal allocate(CPFEM_dPdF(3,3,3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dPdF = 0.0_pReal allocate(CPFEM_stress_bar(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_stress_bar = 0.0_pReal allocate(CPFEM_jaco_bar(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_bar = 0.0_pReal allocate(CPFEM_jaco_knownGood(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_knownGood = 0.0_pReal ! ! *** User defined results !!! MISSING incorporate consti_Nresults *** allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) CPFEM_results = 0.0_pReal ! ! *** Plastic velocity gradient *** allocate(CPFEM_Lp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Lp_old = 0.0_pReal allocate(CPFEM_Lp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Lp_new = 0.0_pReal ! *** Plastic deformation gradient at (t=t0) and (t=t1) *** allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_new = 0.0_pReal allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) forall (e=1:mesh_NcpElems,i=1:mesh_maxNips,g=1:constitutive_maxNgrains) & CPFEM_Fp_old(:,:,g,i,e) = math_EulerToR(constitutive_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation ! *** Elastic deformation gradient at (t=t1) *** allocate(CPFEM_Fe1(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fe1 = 0.0_pReal ! *** Stress vector at (t=t1) *** allocate(CPFEM_Tstar_v(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Tstar_v = 0.0_pReal ! ! *** Output to MARC output file *** !$OMP CRITICAL (write2out) write(6,*) write(6,*) 'CPFEM Initialization' write(6,*) write(6,*) 'CPFEM_Temperature: ', shape(CPFEM_Temperature) write(6,*) 'CPFEM_ffn_bar: ', shape(CPFEM_ffn_bar) write(6,*) 'CPFEM_ffn: ', shape(CPFEM_ffn) write(6,*) 'CPFEM_ffn1_bar: ', shape(CPFEM_ffn1_bar) write(6,*) 'CPFEM_ffn1: ', shape(CPFEM_ffn1) write(6,*) 'CPFEM_PK1_bar: ', shape(CPFEM_PK1_bar) write(6,*) 'CPFEM_PK1: ', shape(CPFEM_PK1) write(6,*) 'CPFEM_dPdF_bar: ', shape(CPFEM_dPdF_bar) write(6,*) 'CPFEM_dPdF_bar_old: ', shape(CPFEM_dPdF_bar_old) write(6,*) 'CPFEM_dPdF: ', shape(CPFEM_dPdF) write(6,*) 'CPFEM_stress_bar: ', shape(CPFEM_stress_bar) write(6,*) 'CPFEM_jaco_bar: ', shape(CPFEM_jaco_bar) write(6,*) 'CPFEM_jaco_knownGood: ', shape(CPFEM_jaco_knownGood) write(6,*) 'CPFEM_results: ', shape(CPFEM_results) write(6,*) 'CPFEM_Lp_old: ', shape(CPFEM_Lp_old) write(6,*) 'CPFEM_Lp_new: ', shape(CPFEM_Lp_new) write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old) write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new) write(6,*) 'CPFEM_Fe1: ', shape(CPFEM_Fe1) write(6,*) 'CPFEM_Tstar_v: ', shape(CPFEM_Tstar_v) write(6,*) call flush(6) !$OMP END CRITICAL (write2out) return ! END SUBROUTINE ! ! !*********************************************************************** !*** perform initialization at first call, update variables and *** !*** call the actual material model *** ! ! CPFEM_mode computation mode (regular, collection, recycle) ! ffn deformation gradient for t=t0 ! ffn1 deformation gradient for t=t1 ! Temperature temperature ! CPFEM_dt time increment ! CPFEM_en element number ! CPFEM_in intergration point number ! CPFEM_stress stress vector in Mandel notation ! CPFEM_updateJaco flag to initiate computation of Jacobian ! CPFEM_jaco jacobian in Mandel notation ! CPFEM_ngens size of stress strain law !*********************************************************************** SUBROUTINE CPFEM_general(CPFEM_mode, ffn, ffn1, Temperature, CPFEM_dt,& CPFEM_en, CPFEM_in, CPFEM_stress, CPFEM_updateJaco, CPFEM_jaco, CPFEM_ngens) ! note: CPFEM_stress = Cauchy stress cs(6) and CPFEM_jaco = Consistent tangent dcs/de ! use prec, only: pReal,pInt use FEsolving use debug use math use mesh, only: mesh_init,mesh_FEasCP, mesh_NcpElems, FE_Nips, FE_mapElemtype, mesh_element use lattice, only: lattice_init use constitutive, only: constitutive_init,constitutive_state_old,constitutive_state_new,material_Cslip_66 implicit none ! integer(pInt) CPFEM_en, CPFEM_in, cp_en, CPFEM_ngens, i,j,k,l,m,n, e real(pReal), dimension (3,3) :: ffn,ffn1,Kirchhoff_bar real(pReal), dimension (3,3,3,3) :: H_bar, H_bar_sym real(pReal), dimension(CPFEM_ngens) :: CPFEM_stress real(pReal), dimension(CPFEM_ngens,CPFEM_ngens) :: CPFEM_jaco, odd_jaco real(pReal) Temperature,CPFEM_dt,J_inverse integer(pInt) CPFEM_mode ! 1: regular computation with aged results& ! 2: regular computation& ! 3: collection of FEM data& ! 4: recycling of former results (MARC speciality)& ! 5: record tangent from former converged inc& ! 6: restore tangent from former converged inc logical CPFEM_updateJaco ! if (.not. CPFEM_init_done) then ! initialization step (three dimensional stress state check missing?) call math_init() call mesh_init() call lattice_init() call constitutive_init() call crystallite_init() call CPFEM_init(Temperature) CPFEM_init_done = .true. endif ! cp_en = mesh_FEasCP('elem',CPFEM_en) if (cp_en == 1 .and. CPFEM_in == 1) & write(6,'(a10,1x,f8.4,1x,a10,1x,i4,1x,a10,1x,i3,1x,a10,1x,i2,x,a10,1x,i2)') & 'theTime',theTime,'theInc',theInc,'theCycle',theCycle,'theLovl',theLovl,& 'mode',CPFEM_mode if (CPFEM_mode /= 1) CPFEM_results_aged = .false. select case (CPFEM_mode) case (2,1) ! *** regular computation (with aging of results) *** if (CPFEM_mode == 1 .and. & .not. CPFEM_results_aged) then ! age results at start of new increment CPFEM_Fp_old = CPFEM_Fp_new constitutive_state_old = constitutive_state_new CPFEM_results_aged = .true. ! aging is done write (6,*) ')))))))))))))) results aged (((((((((((((((',cp_en,CPFEM_in endif CPFEM_Temperature(CPFEM_in,cp_en) = Temperature ! store temperature CPFEM_ffn_bar(:,:,CPFEM_in,cp_en) = ffn ! store def grad for start of inc CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en) = ffn1 ! store def grad for end of inc debugger = (cp_en == 1160 .and. CPFEM_in == 6) ! switch on debugging call CPFEM_MaterialPoint(CPFEM_updateJaco, CPFEM_dt, CPFEM_in, cp_en) ! call for result at this IP ! translate from P and dP/dF to CS and dCS/dE Kirchhoff_bar = math_mul33x33(CPFEM_PK1_bar(:,:,CPFEM_in, cp_en),transpose(CPFEM_ffn1_bar(:,:,CPFEM_in, cp_en))) J_inverse = 1.0_pReal/math_det3x3(CPFEM_ffn1_bar(:,:,CPFEM_in, cp_en)) CPFEM_stress_bar(1:CPFEM_ngens,CPFEM_in,cp_en) = math_Mandel33to6(J_inverse*Kirchhoff_bar) H_bar = 0.0_pReal forall(i=1:3,j=1:3,k=1:3,l=1:3,m=1:3,n=1:3) & H_bar(i,j,k,l) = H_bar(i,j,k,l) + & CPFEM_ffn1_bar(j,m,CPFEM_in,cp_en) * & CPFEM_ffn1_bar(l,n,CPFEM_in,cp_en) * & CPFEM_dPdF_bar(i,m,k,n,CPFEM_in,cp_en) - & math_I3(j,l)*CPFEM_ffn1_bar(i,m,CPFEM_in,cp_en)*CPFEM_PK1_bar(k,m,CPFEM_in,cp_en) + & 0.5_pReal*(math_I3(i,k)*Kirchhoff_bar(j,l) + math_I3(j,l)*Kirchhoff_bar(i,k) + & math_I3(i,l)*Kirchhoff_bar(j,k) + math_I3(j,k)*Kirchhoff_bar(i,l)) forall(i=1:3,j=1:3,k=1:3,l=1:3) & H_bar_sym(i,j,k,l)= 0.25_pReal*(H_bar(i,j,k,l) +H_bar(j,i,k,l) +H_bar(i,j,l,k) +H_bar(j,i,l,k)) CPFEM_jaco_bar(1:CPFEM_ngens,1:CPFEM_ngens,CPFEM_in,cp_en) = math_Mandel3333to66(J_inverse*H_bar) case (3) ! *** collect and return odd result *** CPFEM_Temperature(CPFEM_in,cp_en) = Temperature CPFEM_ffn_bar(:,:,CPFEM_in,cp_en) = ffn CPFEM_ffn1_bar(:,:,CPFEM_in,cp_en) = ffn1 CPFEM_stress_bar(1:CPFEM_ngens,CPFEM_in,cp_en) = CPFEM_odd_stress CPFEM_jaco_bar(1:CPFEM_ngens,1:CPFEM_ngens,CPFEM_in,cp_en) = CPFEM_odd_jacobian*math_identity2nd(CPFEM_ngens) CPFEM_calc_done = .false. case (4) ! *** do nothing since we can recycle the former results (MARC specialty) *** case (5) ! *** record consistent tangent at beginning of new increment *** CPFEM_jaco_knownGood = CPFEM_jaco_bar case (6) ! *** restore consistent tangent after cutback *** CPFEM_jaco_bar = CPFEM_jaco_knownGood end select ! ! return the local stress and the jacobian from storage CPFEM_stress(1:CPFEM_ngens) = CPFEM_stress_bar(1:CPFEM_ngens,CPFEM_in,cp_en) CPFEM_jaco(1:CPFEM_ngens,1:CPFEM_ngens) = CPFEM_jaco_bar(1:CPFEM_ngens,1:CPFEM_ngens,CPFEM_in,cp_en) if (debugger) write (6,'(a,/,6(6(f9.3,x)/))') 'stiffness / GPa',CPFEM_jaco(1:CPFEM_ngens,:)/1e9_pReal ! return ! END SUBROUTINE ! ! !********************************************************** !*** calculate the material point behaviour *** !********************************************************** SUBROUTINE CPFEM_MaterialPoint(& updateJaco,& ! flag to initiate Jacobian updating CPFEM_dt,& ! Time increment (dt) CPFEM_in,& ! Integration point number cp_en) ! Element number ! use prec use FEsolving, only: theCycle use debug use math, only: math_pDecomposition,math_RtoEuler,inDeg,math_I3,math_invert3x3,math_permut,math_invert,math_delta use IO, only: IO_error use mesh, only: mesh_element, mesh_NcpElems, FE_Nips ! use crystallite use constitutive implicit none ! integer(pInt) cp_en,CPFEM_in,g,i,e integer(pInt) el_start, el_end, ip_start, ip_end logical updateJaco,error real(pReal) CPFEM_dt,volfrac real(pReal), dimension(3,3) :: U,R !,Fe1 ! real(pReal), dimension(3,3) :: PK1 ! real(pReal), dimension(3,3,3,3) :: dPdF,dPdF_bar_old ! CPFEM_PK1_bar = 0.0_pReal ! zero out average first PK stress !initialize element loop if (cp_en /= 0_pInt) then el_start = cp_en el_end = cp_en else el_start = 1_pInt el_end = mesh_NcpElems endif ! prescribe FFN and FFN1 depending on homogenization scheme !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) CPFEM_ffn(:,:,g,i,e) = CPFEM_ffn_bar(:,:,i,e) !Taylor homogenization CPFEM_ffn1(:,:,g,i,e) = CPFEM_ffn1_bar(:,:,i,e) !Taylor homogenization end do end do end do !$OMP END PARALLEL DO ! calculate stress, update state and update jacobian in case needed for all or one ip if (updateJaco) then CPFEM_dPdF_bar_old = CPFEM_dPdF_bar ! remember former average consistent tangent CPFEM_dPdF_bar = 0.0_pReal ! zero out avg consistent tangent for later assembly endif call SingleCrystallite(updateJaco,CPFEM_dt,el_start,el_end,CPFEM_in) !****************************************************************************************************** ! check convergence of homogenization in case needed !****************************************************************************************************** ! calculate average quantities per ip and post results !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) volfrac = constitutive_matVolFrac(g,i,e)*constitutive_texVolFrac(g,i,e) CPFEM_PK1_bar(:,:,i,e) = CPFEM_PK1_bar(:,:,i,e) + volfrac * CPFEM_PK1(:,:,g,i,e) if (updateJaco) CPFEM_dPdF_bar(:,:,:,:,i,e) = & CPFEM_dPdF_bar(:,:,:,:,i,e) + volfrac * CPFEM_dPdF(:,:,:,:,g,i,e) ! add up crystallite stiffnesses ! (may have "holes" corresponding ! to former avg tangent) ! update results plotted in MENTAT call math_pDecomposition(CPFEM_Fe1(:,:,g,i,e),U,R,error) ! polar decomposition if (error) then !$OMP CRITICAL (write2out) write(6,*) 'polar decomposition of', CPFEM_Fe1(:,:,g,i,e) write(6,*) 'Grain: ',g write(6,*) 'Integration point: ',i write(6,*) 'Element: ',mesh_element(1,e) !$OMP END CRITICAL (write2out) call IO_error(650) return endif CPFEM_results(1:3,g,i,e) = math_RtoEuler(transpose(R))*inDeg ! orientation CPFEM_results(4 ,g,i,e) = volfrac ! volume fraction of orientation end do end do end do !$OMP END PARALLEL DO ! return ! END SUBROUTINE ! ! !******************************************************************** ! Initialize crystallite !******************************************************************** subroutine crystallite_init() use mesh, only: mesh_maxNips,mesh_NcpElems use constitutive, only: constitutive_maxNgrains implicit none allocate(crystallite_converged(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)); crystallite_converged = .false. ! ! *** Output to MARC output file *** !$OMP CRITICAL (write2out) write(6,*) write(6,*) 'crystallite Initialization' write(6,*) write(6,*) 'crystallite_converged: ', shape(crystallite_converged) write(6,*) call flush(6) !$OMP END CRITICAL (write2out) return ! end subroutine ! ! !******************************************************************** ! Calculates the stress and jacobi (if wanted) for all or a single component !******************************************************************** subroutine SingleCrystallite(& updateJaco,& ! update of Jacobian required dt,& ! time increment el_start,& ! first element in element loop el_end,& ! last element in element loop CPFEM_in) ! IP number ! use prec, only: pReal,pInt,pert_Fg,subStepMin, nCutback use debug use constitutive use mesh, only: mesh_element, FE_Nips use math use IO, only: IO_error ! use CPFEM implicit none ! logical updateJaco, JacoOK real(preal) dt real(pReal), dimension(3,3) :: Fg_pert,Lp_pert, P_pert, Fp_pert, Fe_pert real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(constitutive_maxNstatevars) :: state_pert integer(pInt) el_start, el_end, CPFEM_in, ip_start, ip_end, g, i, e, k, l, iOuter ! crystallite_converged=.true. !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) crystallite_converged(g,i,e)=.false. end do end do end do !$OMP END PARALLEL DO constitutive_state_new=constitutive_state_old CPFEM_Lp_new = CPFEM_Lp_old iOuter = 0_pInt do while(any(crystallite_converged(:,:,el_start:el_end))==.false.) !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) if(.not.crystallite_converged(g,i,e))& call IntegrateStress(CPFEM_Tstar_v(:,g,i,e), CPFEM_PK1(:,:,g,i,e), CPFEM_ffn1(:,:,g,i,e),& CPFEM_Fp_new(:,:,g,i,e), CPFEM_Fe1(:,:,g,i,e), CPFEM_Lp_new(:,:,g,i,e),& constitutive_state_new(:,g,i,e), dt, g, i, e) end do end do end do !$OMP END PARALLEL DO !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) if(.not.crystallite_converged(g,i,e))& call UpdateState(CPFEM_Tstar_v(:,g,i,e),constitutive_state_new(:,g,i,e),dt,g,i,e) end do end do end do !$OMP END PARALLEL DO iOuter = iOuter + 1_pInt if (iOuter==Nouter) then !$OMP CRITICAL (write2out) write (6,*) 'Terminated outer loop at el,ip,grain',e,i,g !$OMP CRITICAL (out) debug_OuterLoopDistribution(iOuter) = debug_OuterLoopDistribution(iOuter)+1 !$OMP END CRITICAL (out) call IO_error(600) !$OMP END CRITICAL (write2out) endif end do !$OMP CRITICAL (out) debug_OuterLoopDistribution(iOuter) = debug_OuterLoopDistribution(iOuter)+1 !$OMP END CRITICAL (out) if (wantsConstitutiveResults) then ! get the post_results upon request !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) CPFEM_results(CPFEM_Nresults+1:CPFEM_Nresults+constitutive_Nresults(g,i,e),g,i,e) =& constitutive_post_results(CPFEM_Tstar_v(:,g,i,e),constitutive_state_new(:,g,i,e),& CPFEM_Temperature(i,e),dt,g,i,e) end do end do end do !$OMP END PARALLEL DO endif ! !***** Calculate Jacobian ***** if(updateJaco) then if (debugger) then !$OMP CRITICAL (write2out) write (6,*) 'Jacobian calc' !$OMP END CRITICAL (write2out) endif ! crystallite_converged=.false. !$OMP PARALLEL DO do e=el_start,el_end if(CPFEM_in /= 0_pInt) then ip_start = CPFEM_in ip_end = CPFEM_in else ip_start = 1 ip_end = FE_Nips(mesh_element(2,e)) ! iterate over all IPs of this element's type endif do i=ip_start,ip_end do g=1,texture_Ngrains(mesh_element(4,e)) do k=1,3 do l=1,3 crystallite_converged(g,i,e)=.false. JacoOK=.true. Fg_pert = CPFEM_ffn1(:,:,g,i,e) ! initialize perturbed Fg Fg_pert(k,l) = Fg_pert(k,l) + pert_Fg ! perturb single component Lp_pert = CPFEM_Lp_new(:,:,g,i,e) ! initialize Lp Fp_pert = CPFEM_Fp_new(:,:,g,i,e) ! initialize Fp state_pert = constitutive_state_new(:,g,i,e) ! initial guess from end of time step iOuter=0_pInt do while(.not.crystallite_converged(g,i,e)) call IntegrateStress(Tstar_v, P_pert, Fg_pert, Fp_pert, Fe_pert, Lp_pert, state_pert, dt, g, i, e) call UpdateState(Tstar_v,state_pert,dt,g,i,e) iOuter = iOuter + 1_pInt if (iOuter==Nouter) then JacoOK=.false. exit endif end do !$OMP CRITICAL (out) debug_OuterLoopDistribution(iOuter) = debug_OuterLoopDistribution(iOuter)+1 !$OMP END CRITICAL (out) if (JacoOK) & CPFEM_dPdF(:,:,k,l,g,i,e) = (P_pert-CPFEM_PK1(:,:,g,i,e))/pert_Fg ! constructing tangent dP_ij/dFg_kl only if valid forward difference ! otherwise leave component unchanged end do end do end do end do end do !$OMP END PARALLEL DO endif ! return ! end subroutine ! !******************************************************************** ! Update the state for a single component !******************************************************************** subroutine UpdateState(& Tstar_v,& ! stress state,& ! state dt,& ! time increment g,& ! grain number i,& ! integration point number e& ! element number ) use prec, only: pReal,pInt,reltol_Outer use constitutive, only: constitutive_dotState, constitutive_state_old, constitutive_Nstatevars ! use CPFEM, only: CPFEM_Temperature ! integer(pInt) g, i, e real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(constitutive_Nstatevars(g, i, e)) :: state, ROuter real(pReal) dt ! ROuter = state - constitutive_state_old(:,g,i,e) - & dt*constitutive_dotState(Tstar_v,state,CPFEM_Temperature(i,e),& g,i,e) ! residuum from evolution of microstructure state = state - ROuter ! update of microstructure if (maxval(abs(ROuter/state),state /= 0.0_pReal) < reltol_Outer) crystallite_converged(g,i,e) = .true. ! return ! end subroutine ! ! !******************************************************************** ! Calculates the stress for a single component !******************************************************************** !*********************************************************************** !*** calculation of stress (P), stiffness (dPdF), *** !*** and announcment of any *** !*** acceleration of the Newton-Raphson correction *** !*********************************************************************** subroutine IntegrateStress(& Tstar_v,& ! Stress vector P,& ! first PK stress Fg_new,& ! new global deformation gradient Fp_new,& ! new plastic deformation gradient Fe_new,& ! new "elastic" deformation gradient Lp,& ! plastic velocity gradient state_new,& ! new state variable array dt,& ! time increment g,& ! grain number i,& ! integration point number e) ! element number ! post_results,& ! plot results from constitutive model ! Fp_new,& ! new plastic deformation gradient ! updateJaco,& ! update of Jacobian required ! Temperature,& ! temperature of crystallite ! Fg_old,& ! old global deformation gradient ! Fp_old,& ! old plastic deformation gradient ! state_old) ! old state variable array ! use prec, only: pReal,pInt,pert_Fg,subStepMin, nCutback use debug use constitutive, only: constitutive_Nstatevars,constitutive_Nresults,constitutive_state_old use math ! use CPFEM ! implicit none ! character(len=128) msg logical error,success integer(pInt) e,i,g, nCutbacks, maxCutbacks real(pReal) Temperature real(pReal) dt,dt_aim,subFrac,subStep,det real(pReal), dimension(3,3) :: Lp,Lp_interpolated,inv real(pReal), dimension(3,3) :: Fg_current,Fg_new,Fg_aim,deltaFg real(pReal), dimension(3,3) :: Fp_current,Fp_new real(pReal), dimension(3,3) :: Fe_current,Fe_new real(pReal), dimension(3,3) :: P real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(constitutive_Nstatevars(g,i,e)) :: state_new ! real(pReal), dimension(constitutive_Nstatevars(g,i,e)) :: state_current ! ! debugger= e==1.and.i==1 deltaFg = Fg_new - CPFEM_ffn(:,:,g,i,e) subFrac = 0.0_pReal subStep = 1.0_pReal nCutbacks = 0_pInt maxCutbacks = 0_pInt Fg_current = CPFEM_ffn(:,:,g,i,e) ! initialize to start of inc Fp_current = CPFEM_Fp_old(:,:,g,i,e) call math_invert3x3(Fp_current,inv,det,error) Fe_current = math_mul33x33(Fg_current,inv) ! state_current = state_new success = .false. ! pretend cutback dt_aim = 0.0_pReal ! prevent initial Lp interpolation Temperature=CPFEM_Temperature(i,e) ! ! begin the cutback loop do while (subStep > subStepMin) ! continue until finished or too much cut backing if (success) then ! wind forward Fg_current = Fg_aim Fe_current = Fe_new Fp_current = Fp_new ! state_current = state_new elseif (dt_aim > 0.0_pReal) then call math_invert3x3(Fg_aim,inv,det,error) ! inv of Fg_aim Lp_interpolated = 0.5_pReal*Lp + & 0.5_pReal*(math_I3 - math_mul33x33(Fp_current,& math_mul33x33(inv,Fe_current)))/dt_aim ! interpolate Lp and L if (debugger) then !$OMP CRITICAL (write2out) write (6,*) 'Lp interpolation' write (6,'(a,/,3(3(f12.7,x)/))') 'from',Lp(1:3,:) write (6,'(a,/,3(3(f12.7,x)/))') 'to',Lp_interpolated(1:3,:) !$OMP END CRITICAL (write2out) endif Lp = Lp_interpolated endif ! Fg_aim = Fg_current + subStep*deltaFg ! aim for Fg dt_aim = subStep*dt ! aim for dt if (debugger) then !$OMP CRITICAL (write2out) write (6,*) 'using these values' ! write (6,'(a,/,3(4(f9.3,x)/))') 'state current / MPa',state_current/1e6_pReal write (6,'(a,/,3(4(f9.3,x)/))') 'state new / MPa',state_new/1e6_pReal write (6,'(a,/,3(3(f12.7,x)/))') 'Fe current',Fe_current(1:3,:) write (6,'(a,/,3(3(f12.7,x)/))') 'Fp current',Fp_current(1:3,:) write (6,'(a,/,3(3(f12.7,x)/))') 'Lp (old=new guess)',Lp(1:3,:) write (6,'(a20,f,x,a2,x,f)') 'integrating from ',subFrac,'to',(subFrac+subStep) !$OMP END CRITICAL (write2out) endif ! call TimeIntegration(msg,Lp,Fp_new,Fe_new,Tstar_v,P,state_new,dt_aim,e,i,g,Temperature,Fg_aim,Fp_current) ! if (msg == 'ok') then subFrac = subFrac + subStep subStep = min(1.0_pReal-subFrac, subStep*2.0_pReal) ! accelerate nCutbacks = 0_pInt ! reset cutback counter success = .true. ! keep current Lp else nCutbacks = nCutbacks + 1 ! record additional cutback maxCutbacks = max(nCutbacks,maxCutbacks)! remember maximum number of cutbacks subStep = subStep / 2.0_pReal ! cut time step in half success = .false. ! force Lp interpolation ! if (debugger) then !$OMP CRITICAL (write2out) write (6,*) '>>>>>>>>>>>>>>>>>>>> cutback <<<<<<<<<<<<<<<<<<<<<<' write (6,*) 'Element, Ip:', e, i write (6,*) msg !$OMP END CRITICAL (write2out) ! endif ! endif enddo ! potential substepping ! !$OMP CRITICAL (cutback) debug_cutbackDistribution(min(nCutback,maxCutbacks)+1) = debug_cutbackDistribution(min(nCutback,maxCutbacks)+1)+1 !$OMP END CRITICAL (cutback) ! ! debugger = .false. return end subroutine ! !*********************************************************************** !*** fully-implicit two-level time integration *** !*** based on a residuum in Lp and intermediate *** !*** acceleration of the Newton-Raphson correction *** !*********************************************************************** SUBROUTINE TimeIntegration(& msg,& ! return message Lpguess,& ! guess of plastic velocity gradient Fp_new,& ! new plastic deformation gradient Fe_new,& ! new "elastic" deformation gradient Tstar_v,& ! Stress vector P,& ! 1nd PK stress (taken as initial guess if /= 0) state,& ! current microstructure at end of time inc (taken as guess if /= 0) dt,& ! time increment cp_en,& ! element number ip,& ! integration point number grain,& ! grain number Temperature,& ! temperature Fg_new,& ! new total def gradient Fp_old) ! former plastic def gradient ! state_current) ! former microstructure use prec use debug use mesh, only: mesh_element use constitutive, only: constitutive_Nstatevars,constitutive_Microstructure,& constitutive_homogenizedC,constitutive_LpAndItsTangent use math use IO implicit none ! character(len=*) msg logical failed integer(pInt) cp_en, ip, grain integer(pInt) iInner,dummy, i,j,k,l,m,n real(pReal) dt, Temperature, det, p_hydro, leapfrog,maxleap real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(9,9) :: dLp,dTdLp,dRdLp,invdRdLp,eye2 real(pReal), dimension(6,6) :: C_66 real(pReal), dimension(3,3) :: Fg_new,Fp_new,invFp_new,Fp_old,invFp_old,Fe_new real(pReal), dimension(3,3) :: P !,Tstar real(pReal), dimension(3,3) :: Lp,Lpguess,Lpguess_old,Rinner,Rinner_old,A,B,BT,AB,BTA real(pReal), dimension(3,3,3,3) :: C real(pReal), dimension(constitutive_Nstatevars(grain, ip, cp_en)) :: state ! msg = 'ok' ! error-free so far eye2 = math_identity2nd(9) call math_invert3x3(Fp_old,invFp_old,det,failed) ! inversion of Fp_old if (failed) then msg = 'inversion Fp_old' return endif A = math_mul33x33(transpose(invFp_old), math_mul33x33(transpose(Fg_new),math_mul33x33(Fg_new,invFp_old))) ! ! if (all(state == 0.0_pReal)) state = state_current ! former state guessed, if none specified ! iOuter = 0_pInt ! outer counter ! if (debugger) then !$OMP CRITICAL (write2out) write (6,'(a,/,3(3(f12.7,x)/))') 'Fg to be calculated',Fg_new !$OMP END CRITICAL (write2out) endif ! !Outer: do ! outer iteration: State ! iOuter = iOuter+1 ! if (debugger) then !!$OMP CRITICAL (write2out) ! write (6,'(a,i3)') '---outer ',iOuter ! write (6,'(a,/,3(4(f9.3,x)/))') 'state old / MPa',state_old/1e6_pReal ! write (6,'(a,/,3(4(f9.3,x)/))') 'state / MPa',state/1e6_pReal ! write (6,'(a,/,3(3(f12.7,x)/))') 'Lpguess',Lpguess(1:3,:) !!$OMP END CRITICAL (write2out) ! endif ! ! if (iOuter > nOuter) then ! msg = 'limit Outer iteration' !!$OMP CRITICAL (out) ! debug_OuterLoopDistribution(nOuter) = debug_OuterLoopDistribution(nOuter)+1 !!$OMP END CRITICAL (out) ! return ! endif call constitutive_Microstructure(state,Temperature,grain,ip,cp_en) C_66 = constitutive_HomogenizedC(state, grain, ip, cp_en) C = math_Mandel66to3333(C_66) ! 4th rank elasticity tensor ! iInner = 0_pInt leapfrog = 1.0_pReal ! correction as suggested by invdRdLp-step maxleap = 1024.0_pReal ! preassign maximum acceleration level ! Lpguess_old = Lpguess ! consider present Lpguess good ! Inner: do ! inner iteration: Lp iInner = iInner+1 ! if (debugger) then !!$OMP CRITICAL (write2out) ! write (6,'(a,i3)') 'inner ',iInner ! if (iInner < 3) then ! write (6,'(a,/,3(3(f12.7,x)/))') 'Lpguess',Lpguess(1:3,:) ! endif !!$OMP END CRITICAL (write2out) ! endif if (iInner > nInner) then ! too many loops required Lpguess = Lpguess_old ! do not trust the last update but resort to former one msg = 'limit Inner iteration' !$OMP CRITICAL (in) debug_InnerLoopDistribution(nInner) = debug_InnerLoopDistribution(nInner)+1 !$OMP END CRITICAL (in) return endif ! B = math_i3 - dt*Lpguess BT = transpose(B) AB = math_mul33x33(A,B) BTA = math_mul33x33(BT,A) Tstar_v = 0.5_pReal*math_mul66x6(C_66,math_mandel33to6(math_mul33x33(BT,AB)-math_I3)) ! Tstar = math_Mandel6to33(Tstar_v) p_hydro=(Tstar_v(1)+Tstar_v(2)+Tstar_v(3))/3.0_pReal forall(i=1:3) Tstar_v(i) = Tstar_v(i)-p_hydro ! subtract hydrostatic pressure call constitutive_LpAndItsTangent(Lp,dLp, & Tstar_v,state,Temperature,grain,ip,cp_en) ! Rinner = Lpguess - Lp ! update current residuum ! if (.not.(any(Rinner/=Rinner)) .and. & ! exclude any NaN in residuum ( (maxval(abs(Rinner)) < abstol_Inner) .or. & ! below abs tol .or. ( any(abs(dt*Lpguess) > relevantStrain) .and. & ! worth checking? .and. maxval(abs(Rinner/Lpguess),abs(dt*Lpguess) > relevantStrain) < reltol_Inner & ! below rel tol ) & ) & ) & exit Inner ! convergence ! ! check for acceleration/deceleration in Newton--Raphson correction ! if (any(Rinner/=Rinner) .and. & ! NaN occured at regular speed leapfrog == 1.0) then Lpguess = Lpguess_old ! restore known good guess msg = 'NaN present' ! croak for cutback return elseif (leapfrog > 1.0_pReal .and. & ! at fast pace ? (sum(Rinner*Rinner) > sum(Rinner_old*Rinner_old) .or. & ! worse residuum sum(Rinner*Rinner_old) < 0.0_pReal) .or. & ! residuum changed sign (overshoot) any(Rinner/=Rinner) ) then ! NaN maxleap = 0.5_pReal * leapfrog ! limit next acceleration leapfrog = 1.0_pReal ! grinding halt else ! better residuum dTdLp = 0.0_pReal ! calc dT/dLp forall (i=1:3,j=1:3,k=1:3,l=1:3,m=1:3,n=1:3) & dTdLp(3*(i-1)+j,3*(k-1)+l) = dTdLp(3*(i-1)+j,3*(k-1)+l) + & C(i,j,l,n)*AB(k,n)+C(i,j,m,l)*BTA(m,k) dTdLp = -0.5_pReal*dt*dTdLp dRdLp = eye2 - math_mul99x99(dLp,dTdLp) ! calc dR/dLp invdRdLp = 0.0_pReal call math_invert(9,dRdLp,invdRdLp,dummy,failed) ! invert dR/dLp --> dLp/dR if (failed) then msg = 'inversion dR/dLp' if (debugger) then !$OMP CRITICAL (write2out) write (6,*) msg write (6,'(a,/,9(9(e9.3,x)/))') 'dRdLp', dRdLp(1:9,:) write (6,'(a,/,3(4(f9.3,x)/))') 'state / MPa',state/1e6_pReal write (6,'(a,/,3(3(f12.7,x)/))') 'Lpguess',Lpguess(1:3,:) write (6,'(a,/,3(3(e12.7,x)/))') 'Lp',Lp(1:3,:) write (6,'(a,/,6(f9.3,x))') 'Tstar / MPa',Tstar_v/1e6_pReal !$OMP END CRITICAL (write2out) endif return endif ! Rinner_old = Rinner ! remember current residuum Lpguess_old = Lpguess ! remember current Lp guess if (iInner > 1 .and. leapfrog < maxleap) & leapfrog = 2.0_pReal * leapfrog ! accelerate if ok endif ! Lpguess = Lpguess_old ! start from current guess Rinner = Rinner_old ! use current residuum forall (i=1:3,j=1:3,k=1:3,l=1:3) & ! leapfrog to updated Lpguess Lpguess(i,j) = Lpguess(i,j) - leapfrog*invdRdLp(3*(i-1)+j,3*(k-1)+l)*Rinner(k,l) enddo Inner ! !$OMP CRITICAL (in) debug_InnerLoopDistribution(iInner) = debug_InnerLoopDistribution(iInner)+1 !$OMP END CRITICAL (in) ! ROuter = state - state_old - & ! dt*constitutive_dotState(Tstar_v,state,Temperature,& ! grain,ip,cp_en) ! residuum from evolution of microstructure ! state = state - ROuter ! update of microstructure ! ! if (iOuter==nOuter) then !!$OMP CRITICAL (write2out) ! write (6,*) 'Terminated outer loop at el,ip,grain',cp_en,ip,grain !!$OMP END CRITICAL (write2out) ! exit Outer ! endif ! if (maxval(abs(Router/state),state /= 0.0_pReal) < reltol_Outer) exit Outer ! enddo Outer ! !!$OMP CRITICAL (out) ! debug_OuterLoopDistribution(iOuter) = debug_OuterLoopDistribution(iOuter)+1 !!$OMP END CRITICAL (out) invFp_new = math_mul33x33(invFp_old,B) call math_invert3x3(invFp_new,Fp_new,det,failed) if (failed) then msg = 'inversion Fp_new^-1' return endif ! ! if (wantsConstitutiveResults) then ! get the post_results upon request ! results = 0.0_pReal ! results = constitutive_post_results(Tstar_v,state,Temperature,dt,grain,ip,cp_en) ! endif ! Fp_new = Fp_new*det**(1.0_pReal/3.0_pReal) ! regularize Fp by det = det(InvFp_new) !! forall (i=1:3) Tstar_v(i) = Tstar_v(i)+p_hydro ! add hydrostatic component back Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe ! P = math_mul33x33(Fe_new,math_mul33x33(Tstar,transpose(invFp_new))) ! first PK stress P = math_mul33x33(Fe_new,math_mul33x33(math_Mandel6to33(Tstar_v),transpose(invFp_new))) ! first PK stress return ! END SUBROUTINE ! END MODULE !##############################################################