!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for temperature evolution from heat conduction !> @details to be done !-------------------------------------------------------------------------------------------------- module thermal_conduction use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & thermal_conduction_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & thermal_conduction_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & thermal_conduction_output !< name of each post result output integer(pInt), dimension(:), allocatable, target, public :: & thermal_conduction_Noutput !< number of outputs per instance of this damage enum, bind(c) enumerator :: undefined_ID, & temperature_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & thermal_conduction_outputID !< ID of each post result output public :: & thermal_conduction_init, & thermal_conduction_getSourceAndItsTangent, & thermal_conduction_getConductivity33, & thermal_conduction_getSpecificHeat, & thermal_conduction_getMassDensity, & thermal_conduction_putTemperatureAndItsRate, & thermal_conduction_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_init(fileUnit) #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & thermal_type, & thermal_typeInstance, & homogenization_Noutput, & THERMAL_conduction_label, & THERMAL_conduction_ID, & material_homog, & mappingHomogenization, & thermalState, & thermalMapping, & thermal_initialT, & temperature, & temperatureRate use config, only: & material_partHomogenization implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o integer(pInt) :: sizeState integer(pInt) :: NofMyHomog character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(thermal_type == THERMAL_conduction_ID),pInt) if (maxNinstance == 0_pInt) return allocate(thermal_conduction_sizePostResults(maxNinstance), source=0_pInt) allocate(thermal_conduction_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt) allocate(thermal_conduction_output (maxval(homogenization_Noutput),maxNinstance)) thermal_conduction_output = '' allocate(thermal_conduction_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID) allocate(thermal_conduction_Noutput (maxNinstance), source=0_pInt) rewind(fileUnit) section = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next homog section section = section + 1_pInt ! advance homog section counter cycle ! skip to next line endif if (section > 0_pInt ) then; if (thermal_type(section) == THERMAL_conduction_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran instance = thermal_typeInstance(section) ! which instance of my thermal is present homog chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case ('temperature') thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1_pInt thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) end select end select endif; endif enddo parsingFile initializeInstances: do section = 1_pInt, size(thermal_type) if (thermal_type(section) == THERMAL_conduction_ID) then NofMyHomog=count(material_homog==section) instance = thermal_typeInstance(section) !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputsLoop: do o = 1_pInt,thermal_conduction_Noutput(instance) select case(thermal_conduction_outputID(o,instance)) case(temperature_ID) mySize = 1_pInt end select if (mySize > 0_pInt) then ! any meaningful output found thermal_conduction_sizePostResult(o,instance) = mySize thermal_conduction_sizePostResults(instance) = thermal_conduction_sizePostResults(instance) + mySize endif enddo outputsLoop ! allocate state arrays sizeState = 0_pInt thermalState(section)%sizeState = sizeState thermalState(section)%sizePostResults = thermal_conduction_sizePostResults(instance) allocate(thermalState(section)%state0 (sizeState,NofMyHomog)) allocate(thermalState(section)%subState0(sizeState,NofMyHomog)) allocate(thermalState(section)%state (sizeState,NofMyHomog)) nullify(thermalMapping(section)%p) thermalMapping(section)%p => mappingHomogenization(1,:,:) deallocate(temperature (section)%p) allocate (temperature (section)%p(NofMyHomog), source=thermal_initialT(section)) deallocate(temperatureRate(section)%p) allocate (temperatureRate(section)%p(NofMyHomog), source=0.0_pReal) endif enddo initializeInstances end subroutine thermal_conduction_init !-------------------------------------------------------------------------------------------------- !> @brief returns heat generation rate !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el) use math, only: & math_Mandel6to33 use material, only: & homogenization_Ngrains, & mappingHomogenization, & phaseAt, & phasememberAt, & thermal_typeInstance, & phase_Nsources, & phase_source, & SOURCE_thermal_dissipation_ID, & SOURCE_thermal_externalheat_ID use source_thermal_dissipation, only: & source_thermal_dissipation_getRateAndItsTangent use source_thermal_externalheat, only: & source_thermal_externalheat_getRateAndItsTangent use crystallite, only: & crystallite_Tstar_v, & crystallite_Lp implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & T real(pReal), intent(out) :: & Tdot, dTdot_dT real(pReal) :: & my_Tdot, my_dTdot_dT integer(pInt) :: & phase, & homog, & offset, & instance, & grain, & source, & constituent homog = mappingHomogenization(2,ip,el) offset = mappingHomogenization(1,ip,el) instance = thermal_typeInstance(homog) Tdot = 0.0_pReal dTdot_dT = 0.0_pReal do grain = 1, homogenization_Ngrains(homog) phase = phaseAt(grain,ip,el) constituent = phasememberAt(grain,ip,el) do source = 1, phase_Nsources(phase) select case(phase_source(source,phase)) case (SOURCE_thermal_dissipation_ID) call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, & crystallite_Tstar_v(1:6,grain,ip,el), & crystallite_Lp(1:3,1:3,grain,ip,el), & phase, constituent) case (SOURCE_thermal_externalheat_ID) call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, & phase, constituent) case default my_Tdot = 0.0_pReal my_dTdot_dT = 0.0_pReal end select Tdot = Tdot + my_Tdot dTdot_dT = dTdot_dT + my_dTdot_dT enddo enddo Tdot = Tdot/real(homogenization_Ngrains(homog),pReal) dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal) end subroutine thermal_conduction_getSourceAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized thermal conductivity in reference configuration !-------------------------------------------------------------------------------------------------- function thermal_conduction_getConductivity33(ip,el) use lattice, only: & lattice_thermalConductivity33 use material, only: & homogenization_Ngrains, & mappingHomogenization, & material_phase use mesh, only: & mesh_element use crystallite, only: & crystallite_push33ToRef implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), dimension(3,3) :: & thermal_conduction_getConductivity33 integer(pInt) :: & homog, & grain homog = mappingHomogenization(2,ip,el) thermal_conduction_getConductivity33 = 0.0_pReal do grain = 1, homogenization_Ngrains(mesh_element(3,el)) thermal_conduction_getConductivity33 = thermal_conduction_getConductivity33 + & crystallite_push33ToRef(grain,ip,el,lattice_thermalConductivity33(:,:,material_phase(grain,ip,el))) enddo thermal_conduction_getConductivity33 = & thermal_conduction_getConductivity33/real(homogenization_Ngrains(mesh_element(3,el)),pReal) end function thermal_conduction_getConductivity33 !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized specific heat capacity !-------------------------------------------------------------------------------------------------- function thermal_conduction_getSpecificHeat(ip,el) use lattice, only: & lattice_specificHeat use material, only: & homogenization_Ngrains, & mappingHomogenization, & material_phase use mesh, only: & mesh_element use crystallite, only: & crystallite_push33ToRef implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: & thermal_conduction_getSpecificHeat integer(pInt) :: & homog, grain thermal_conduction_getSpecificHeat = 0.0_pReal homog = mappingHomogenization(2,ip,el) do grain = 1, homogenization_Ngrains(mesh_element(3,el)) thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat + & lattice_specificHeat(material_phase(grain,ip,el)) enddo thermal_conduction_getSpecificHeat = & thermal_conduction_getSpecificHeat/real(homogenization_Ngrains(mesh_element(3,el)),pReal) end function thermal_conduction_getSpecificHeat !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized mass density !-------------------------------------------------------------------------------------------------- function thermal_conduction_getMassDensity(ip,el) use lattice, only: & lattice_massDensity use material, only: & homogenization_Ngrains, & mappingHomogenization, & material_phase use mesh, only: & mesh_element use crystallite, only: & crystallite_push33ToRef implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: & thermal_conduction_getMassDensity integer(pInt) :: & homog, grain thermal_conduction_getMassDensity = 0.0_pReal homog = mappingHomogenization(2,ip,el) do grain = 1, homogenization_Ngrains(mesh_element(3,el)) thermal_conduction_getMassDensity = thermal_conduction_getMassDensity & + lattice_massDensity(material_phase(grain,ip,el)) enddo thermal_conduction_getMassDensity = & thermal_conduction_getMassDensity/real(homogenization_Ngrains(mesh_element(3,el)),pReal) end function thermal_conduction_getMassDensity !-------------------------------------------------------------------------------------------------- !> @brief updates thermal state with solution from heat conduction PDE !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el) use material, only: & mappingHomogenization, & temperature, & temperatureRate, & thermalMapping implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & T, & Tdot integer(pInt) :: & homog, & offset homog = mappingHomogenization(2,ip,el) offset = thermalMapping(homog)%p(ip,el) temperature (homog)%p(offset) = T temperatureRate(homog)%p(offset) = Tdot end subroutine thermal_conduction_putTemperatureAndItsRate !-------------------------------------------------------------------------------------------------- !> @brief return array of thermal results !-------------------------------------------------------------------------------------------------- function thermal_conduction_postResults(ip,el) use material, only: & mappingHomogenization, & thermal_typeInstance, & temperature, & thermalMapping implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element real(pReal), dimension(thermal_conduction_sizePostResults(thermal_typeInstance(mappingHomogenization(2,ip,el)))) :: & thermal_conduction_postResults integer(pInt) :: & instance, homog, offset, o, c homog = mappingHomogenization(2,ip,el) offset = thermalMapping(homog)%p(ip,el) instance = thermal_typeInstance(homog) c = 0_pInt thermal_conduction_postResults = 0.0_pReal do o = 1_pInt,thermal_conduction_Noutput(instance) select case(thermal_conduction_outputID(o,instance)) case (temperature_ID) thermal_conduction_postResults(c+1_pInt) = temperature(homog)%p(offset) c = c + 1 end select enddo end function thermal_conduction_postResults end module thermal_conduction