#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,math,string import numpy as np from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Generate geometry description and material configuration from input files used by R.A. Lebensohn. """, version = scriptID) parser.add_option('--column', dest='column', type='int', metavar = 'int', help='data column to discriminate between both phases [%default]') parser.add_option('-t','--threshold', dest='threshold', type='float', metavar = 'float', help='threshold value for phase discrimination [%default]') parser.add_option('--homogenization', dest='homogenization', type='int', metavar = 'int', help='homogenization index for configuration [%default]') parser.add_option('--phase', dest='phase', type='int', nargs = 2, metavar = 'int int', help='phase indices for configuration %default') parser.add_option('--crystallite', dest='crystallite', type='int', metavar = 'int', help='crystallite index for configuration [%default]') parser.add_option('-c', '--configuration', dest='config', action='store_true', help='output material configuration [%default]') parser.add_option('--compress', dest='compress', action='store_true', help='lump identical microstructure and texture information [%default]') parser.add_option('-p', '--precision', dest='precision', choices=['0','1','2','3'], metavar = 'int', help = 'euler angles decimal places for output format and compressing (0,1,2,3) [2]') parser.set_defaults(column = 7) parser.set_defaults(threshold = 1.0) parser.set_defaults(homogenization = 1) parser.set_defaults(phase = [1,2]) parser.set_defaults(crystallite = 1) parser.set_defaults(config = False) parser.set_defaults(compress = False) parser.set_defaults(precision = '2') (options,filenames) = parser.parse_args() #--- setup file handles --------------------------------------------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr, }) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stdout, }) #--- loop over input files ------------------------------------------------------------------------ for file in files: file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n') info = { 'grid': np.zeros(3,'i'), 'size': np.zeros(3,'d'), 'origin': np.zeros(3,'d'), 'microstructures': 0, 'homogenization': options.homogenization } phase = [] eulerangles = [] point = 0 for line in file['input']: if line.strip(): words = line.split() currPos = map(float,words[3:6]) for i in xrange(3): if currPos[i] > info['grid'][i]: info['size'][i] = currPos[i] info['grid'][i]+=1 eulerangles.append(map(float,words[:3])) phase.append(options.phase[int(float(words[options.column-1]) > options.threshold)]) eulerangles = np.array(eulerangles,dtype='f').reshape(info['grid'].prod(),3) phase = np.array(phase,dtype='i').reshape(info['grid'].prod()) if np.any(np.max(eulerangles[0,:])>=360) or np.any(np.max(eulerangles[1,:])>=180) or np.any(np.max(eulerangles[2,:])>=360): file['croak'].write('Error: euler angles out of bounds.\n') continue if options.compress: formatString='{0:0>'+str(int(options.precision)+3)+'}' euleranglesRadInt = (eulerangles*10**int(options.precision)).astype('int') # scale by desired precision and convert to int eulerKeys = np.array([int(''.join(map(formatString.format,euleranglesRadInt[i,:]))) \ for i in xrange(info['grid'].prod())]) # create unique integer key from three euler angles by concatenating the string representation with leading zeros and store as integer devNull, texture, eulerKeys_idx = np.unique(eulerKeys, return_index = True, return_inverse=True)# search unique euler angle keys. Texture IDs are the indices of the first occurence, the inverse is used to construct the microstructure msFull = np.array([[eulerKeys_idx[i],phase[i]] for i in xrange(info['grid'].prod())],'i8') # create a microstructure (texture/phase pair) for each point using unique texture IDs. Use longInt (64bit, i8) because the keys might be long devNull,msUnique,matPoints = np.unique(msFull.view('c16'),True,True) matPoints+=1 microstructure = np.array([msFull[i] for i in msUnique]) # pick only unique microstructures else: texture = np.arange(info['grid'].prod()) microstructure = np.hstack( zip(texture,phase) ).reshape(info['grid'].prod(),2) # create texture/phase pairs formatOut = 1+int(math.log10(len(texture))) textureOut =['\n\n'] eulerFormatOut='%%%i.%if'%(int(options.precision)+4,int(options.precision)) outStringAngles='(gauss) phi1 '+eulerFormatOut+' Phi '+eulerFormatOut+' phi2 '+eulerFormatOut+' scatter 0.0 fraction 1.0\n' for i in xrange(len(texture)): textureOut += ['[Texture%s]\n'%str(i+1).zfill(formatOut) + outStringAngles%tuple(eulerangles[texture[i],...]) ] formatOut = 1+int(math.log10(len(microstructure))) microstructureOut =[''] for i in xrange(len(microstructure)): microstructureOut += ['[Grain%s]\n'%str(i+1).zfill(formatOut) + 'crystallite\t%i\n'%options.crystallite + '(constituent)\tphase %i\ttexture %i\tfraction 1.0\n'%(microstructure[i,1],microstructure[i,0]+1) ] info['microstructures'] = len(microstructure) #--- report --------------------------------------------------------------------------------------- file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + 'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + 'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + 'homogenization: %i\n'%info['homogenization'] + 'microstructures: %i\n\n'%info['microstructures']) if np.any(info['grid'] < 1): file['croak'].write('invalid grid a b c.\n') continue if np.any(info['size'] <= 0.0): file['croak'].write('invalid size x y z.\n') continue #--- write data ----------------------------------------------------------------------------------- if options.config: file['output'].write('\n'.join(microstructureOut+ textureOut) + '\n') else: header = [' '.join([scriptID] + sys.argv[1:]), "grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],), "size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],), "origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],), "microstructures\t%i"%info['microstructures'], "homogenization\t%i"%info['homogenization'], ] file['output'].write('\n'.join(['%i\theader'%(len(header))] + header) + '\n') if options.compress: matPoints = matPoints.reshape((info['grid'][1],info['grid'][0])) np.savetxt(file['output'],matPoints,fmt='%0'+str(1+int(math.log10(np.amax(matPoints))))+'d') else: file['output'].write("1 to %i\n"%(info['microstructures'])) #--- output finalization -------------------------------------------------------------------------- if file['name'] != 'STDIN': file['output'].close() os.rename(file['name']+'_tmp', os.path.splitext(file['name'])[0] +'%s'%('_material.config' if options.config else '.geom'))