import re import copy from typing import Union, Tuple, List, Iterable import pandas as pd import numpy as np from ._typehints import FileHandle from . import util class Table: """Manipulate multi-dimensional spreadsheet-like data.""" def __init__(self, shapes: dict, data: np.ndarray, comments: Union[str, Iterable[str]] = None): """ New spreadsheet. Parameters ---------- shapes : dict with str:tuple pairs Shapes of the data columns. For instance, 'F':(3,3) for a deformation gradient, or 'r':(1,) for a scalar. data : numpy.ndarray or pandas.DataFrame Data. Existing column labels of a pandas.DataFrame will be replaced. comments : str or iterable of str, optional Additional, human-readable information. """ comments_ = [comments] if isinstance(comments,str) else comments self.comments = [] if comments_ is None else [str(c) for c in comments_] self.shapes = { k:(v,) if isinstance(v,(np.int64,np.int32,int)) else v for k,v in shapes.items() } self.data = pd.DataFrame(data=data) self._relabel('uniform') def __repr__(self) -> str: """ Return repr(self). Give short human-readable summary. """ self._relabel('shapes') data_repr = self.data.__repr__() self._relabel('uniform') return '\n'.join(['# '+c for c in self.comments])+'\n'+data_repr def __eq__(self, other: object) -> bool: """ Return self==other. Compare to other Table. """ return NotImplemented if not isinstance(other,Table) else \ self.shapes == other.shapes and self.data.equals(other.data) def __getitem__(self, item: Union[slice, Tuple[slice, ...]]) -> 'Table': """ Return x[y]. Slice the Table according to item. Parameters ---------- item : row and/or column indexer Slice to select from Table. Returns ------- slice : damask.Table Sliced part of the Table. Examples -------- >>> import damask >>> import numpy as np >>> tbl = damask.Table(shapes=dict(colA=(1,),colB=(1,),colC=(1,)), ... data=np.arange(12).reshape((4,3))) >>> tbl['colA','colB'] colA colB 0 0 1 1 3 4 2 6 7 3 9 10 >>> tbl[::2,['colB','colA']] colB colA 0 1 0 2 7 6 >>> tbl[[True,False,False,True],'colB'] colB 0 1 3 10 """ item_ = (item,slice(None,None,None)) if isinstance(item,(slice,np.ndarray)) else \ (np.array(item),slice(None,None,None)) if isinstance(item,list) and np.array(item).dtype == np.bool_ else \ (np.array(item[0]),item[1]) if isinstance(item[0],list) else \ item if isinstance(item[0],(slice,np.ndarray)) else \ (slice(None,None,None),item) sliced = self.data.loc[item_] cols = np.array(sliced.columns if isinstance(sliced,pd.core.frame.DataFrame) else [item_[1]]) _,idx = np.unique(cols,return_index=True) return self.__class__(data=sliced, shapes={k:self.shapes[k] for k in cols[np.sort(idx)]}, comments=self.comments) def __len__(self) -> int: """ Return len(self). Number of rows. """ return len(self.data) def __copy__(self) -> 'Table': """ Return deepcopy(self). Create deep copy. """ return copy.deepcopy(self) copy = __copy__ def _label(self, what: Union[str, List[str]], how: str) -> List[str]: """ Expand labels according to data shape. Parameters ---------- what : str or list Labels to expand. how : {'uniform, 'shapes', 'linear'} Mode of labeling. 'uniform' ==> v v v 'shapes' ==> 3:v v v 'linear' ==> 1_v 2_v 3_v """ what = [what] if isinstance(what,str) else what labels = [] for label in what: shape = self.shapes[label] size = np.prod(shape,dtype=np.int64) if how == 'uniform': labels += [label] * size elif how == 'shapes': labels += [('' if size == 1 or i>0 else f'{util.srepr(shape,"x")}:')+label for i in range(size)] elif how == 'linear': labels += [('' if size == 1 else f'{i+1}_')+label for i in range(size)] else: raise KeyError return labels def _relabel(self, how: str): """ Modify labeling of data in-place. Parameters ---------- how : {'uniform, 'shapes', 'linear'} Mode of labeling. 'uniform' ==> v v v 'shapes' ==> 3:v v v 'linear' ==> 1_v 2_v 3_v """ self.data.columns = self._label(self.shapes,how) # type: ignore def _add_comment(self, label: str, shape: Tuple[int, ...], info: str = None): if info is not None: specific = f'{label}{" "+str(shape) if np.prod(shape,dtype=np.int64) > 1 else ""}: {info}' general = util.execution_stamp('Table') self.comments.append(f'{specific} / {general}') def isclose(self, other: 'Table', rtol: float = 1e-5, atol: float = 1e-8, equal_nan: bool = True) -> np.ndarray: """ Report where values are approximately equal to corresponding ones of other Table. Parameters ---------- other : damask.Table Table to compare against. rtol : float, optional Relative tolerance of equality. atol : float, optional Absolute tolerance of equality. equal_nan : bool, optional Consider matching NaN values as equal. Defaults to True. Returns ------- mask : numpy.ndarray of bool Mask indicating where corresponding table values are close. """ return np.isclose( self.data.to_numpy(), other.data.to_numpy(), rtol=rtol, atol=atol, equal_nan=equal_nan) def allclose(self, other: 'Table', rtol: float = 1e-5, atol: float = 1e-8, equal_nan: bool = True) -> bool: """ Test whether all values are approximately equal to corresponding ones of other Table. Parameters ---------- other : damask.Table Table to compare against. rtol : float, optional Relative tolerance of equality. atol : float, optional Absolute tolerance of equality. equal_nan : bool, optional Consider matching NaN values as equal. Defaults to True. Returns ------- answer : bool Whether corresponding values are close between both tables. """ return np.allclose( self.data.to_numpy(), other.data.to_numpy(), rtol=rtol, atol=atol, equal_nan=equal_nan) @staticmethod def load(fname: FileHandle) -> 'Table': """ Load from ASCII table file. Initial comments are marked by '#', the first non-comment line containing the column labels. - Vector data column labels are indicated by '1_v, 2_v, ..., n_v'. - Tensor data column labels are indicated by '3x3:1_T, 3x3:2_T, ..., 3x3:9_T'. Parameters ---------- fname : file, str, or pathlib.Path Filename or file for reading. Returns ------- loaded : damask.Table Table data from file. """ f = util.open_text(fname) f.seek(0) comments = [] while (line := f.readline().strip()).startswith('#'): comments.append(line.lstrip('#').strip()) labels = line.split() shapes = {} for label in labels: tensor_column = re.search(r'[0-9,x]*?:[0-9]*?_',label) if tensor_column: my_shape = tensor_column.group().split(':',1)[0].split('x') shapes[label.split('_',1)[1]] = tuple([int(d) for d in my_shape]) else: vector_column = re.match(r'[0-9]*?_',label) if vector_column: shapes[label.split('_',1)[1]] = (int(label.split('_',1)[0]),) else: shapes[label] = (1,) data = pd.read_csv(f,names=list(range(len(labels))),sep=r'\s+') return Table(shapes,data,comments) @staticmethod def load_ang(fname: FileHandle) -> 'Table': """ Load from ang file. A valid TSL ang file has to have the following columns: - Euler angles (Bunge notation) in radians, 3 floats, label 'eu'. - Spatial position in meters, 2 floats, label 'pos'. - Image quality, 1 float, label 'IQ'. - Confidence index, 1 float, label 'CI'. - Phase ID, 1 int, label 'ID'. - SEM signal, 1 float, label 'intensity'. - Fit, 1 float, label 'fit'. Parameters ---------- fname : file, str, or pathlib.Path Filename or file for reading. Returns ------- loaded : damask.Table Table data from file. """ f = util.open_text(fname) f.seek(0) content = f.readlines() comments = [util.execution_stamp('Table','from_ang')] for line in content: if line.startswith('#'): comments.append(line.split('#',1)[1].strip()) else: break data = np.loadtxt(content) shapes = {'eu':3, 'pos':2, 'IQ':1, 'CI':1, 'ID':1, 'intensity':1, 'fit':1} if (remainder := data.shape[1]-sum(shapes.values())) > 0: shapes['unknown'] = remainder return Table(shapes,data,comments) @property def labels(self) -> List[str]: return list(self.shapes) def get(self, label: str) -> np.ndarray: """ Get column data. Parameters ---------- label : str Column label. Returns ------- data : numpy.ndarray Array of column data. """ data = self.data[label].to_numpy().reshape((-1,)+self.shapes[label]) return data.astype(type(data.flatten()[0])) def set(self, label: str, data: np.ndarray, info: str = None) -> 'Table': """ Add new or replace existing column data. Parameters ---------- label : str Column label. data : numpy.ndarray Column data. First dimension needs to match number of rows. info : str, optional Human-readable information about the data. Returns ------- updated : damask.Table Updated table. """ dup = self.copy() dup._add_comment(label, data.shape[1:], info) if m := re.match(r'(.*)\[((\d+,)*(\d+))\]',label): key = m.group(1) else: key = label if key in dup.shapes: if m: idx = np.ravel_multi_index(tuple(map(int,m.group(2).split(","))), self.shapes[key]) iloc = dup.data.columns.get_loc(key).tolist().index(True) + idx dup.data.iloc[:,iloc] = data else: dup.data[label] = data.reshape(dup.data[label].shape) else: dup.shapes[label] = data.shape[1:] if len(data.shape) > 1 else (1,) size = np.prod(data.shape[1:],dtype=np.int64) new = pd.DataFrame(data=data.reshape(-1,size), columns=[label]*size, ) new.index = dup.data.index dup.data = pd.concat([dup.data,new],axis=1) return dup def delete(self, label: str) -> 'Table': """ Delete column data. Parameters ---------- label : str Column label. Returns ------- updated : damask.Table Updated table. """ dup = self.copy() dup.data.drop(columns=label,inplace=True) del dup.shapes[label] return dup def rename(self, old: Union[str, Iterable[str]], new: Union[str, Iterable[str]], info: str = None) -> 'Table': """ Rename column data. Parameters ---------- label_old : str or iterable of str Old column label(s). label_new : str or iterable of str New column label(s). Returns ------- updated : damask.Table Updated table. """ dup = self.copy() columns = dict(zip([old] if isinstance(old,str) else old, [new] if isinstance(new,str) else new)) dup.data.rename(columns=columns,inplace=True) dup.comments.append(f'{old} => {new}'+('' if info is None else f': {info}')) dup.shapes = {(label if label not in columns else columns[label]):dup.shapes[label] for label in dup.shapes} return dup def sort_by(self, labels: Union[str, List[str]], ascending: Union[bool, List[bool]] = True) -> 'Table': """ Sort table by data of given columns. Parameters ---------- label : str or list Column labels for sorting. ascending : bool or list, optional Set sort order. Returns ------- updated : damask.Table Updated table. """ labels_ = [labels] if isinstance(labels,str) else labels.copy() for i,l in enumerate(labels_): if m := re.match(r'(.*)\[((\d+,)*(\d+))\]',l): idx = np.ravel_multi_index(tuple(map(int,m.group(2).split(','))), self.shapes[m.group(1)]) labels_[i] = f'{1+idx}_{m.group(1)}' dup = self.copy() dup._relabel('linear') dup.data.sort_values(labels_,axis=0,inplace=True,ascending=ascending) dup._relabel('uniform') dup.comments.append(f'sorted {"ascending" if ascending else "descending"} by {labels}') return dup def append(self, other: 'Table') -> 'Table': """ Append other table vertically (similar to numpy.vstack). Requires matching labels/shapes and order. Parameters ---------- other : damask.Table Table to append. Returns ------- updated : damask.Table Updated table. """ if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns): raise KeyError('mismatch of shapes or labels or their order') dup = self.copy() dup.data = pd.concat([dup.data,other.data],ignore_index=True) return dup def join(self, other: 'Table') -> 'Table': """ Append other table horizontally (similar to numpy.hstack). Requires matching number of rows and no common labels. Parameters ---------- other : damask.Table Table to join. Returns ------- updated : damask.Table Updated table. """ if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]: raise KeyError('duplicated keys or row count mismatch') dup = self.copy() dup.data = dup.data.join(other.data) for key in other.shapes: dup.shapes[key] = other.shapes[key] return dup def save(self, fname: FileHandle, with_labels: bool = True): """ Save as plain text file. Parameters ---------- fname : file, str, or pathlib.Path Filename or file for writing. with_labels : bool, optional Write column labels. Defaults to True. """ labels = [] if with_labels: for l in list(dict.fromkeys(self.data.columns)): if self.shapes[l] == (1,): labels.append(f'{l}') elif len(self.shapes[l]) == 1: labels += [f'{i+1}_{l}' \ for i in range(self.shapes[l][0])] else: labels += [f'{util.srepr(self.shapes[l],"x")}:{i+1}_{l}' \ for i in range(np.prod(self.shapes[l]))] f = util.open_text(fname,'w') f.write('\n'.join([f'# {c}' for c in self.comments] + [' '.join(labels)])+('\n' if labels else '')) self.data.to_csv(f,sep=' ',na_rep='nan',index=False,header=False,line_terminator='\n')