#!/usr/bin/env python2.7 # -*- coding: UTF-8 no BOM -*- import os,sys,math import numpy as np from optparse import OptionParser import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) def merge_dicts(*dict_args): """Given any number of dicts, shallow copy and merge into a new dict, with precedence going to key value pairs in latter dicts.""" result = {} for dictionary in dict_args: result.update(dictionary) return result def curlFFT(geomdim,field): """Calculate curl of a vector or tensor field by transforming into Fourier space.""" shapeFFT = np.array(np.shape(field))[0:3] grid = np.array(np.shape(field)[2::-1]) N = grid.prod() # field size n = np.array(np.shape(field)[3:]).prod() # data size field_fourier = np.fft.rfftn(field,axes=(0,1,2),s=shapeFFT) curl_fourier = np.empty(field_fourier.shape,'c16') # differentiation in Fourier space TWOPIIMG = 2.0j*math.pi einsums = { 3:'slm,ijkl,ijkm->ijks', # vector, 3 -> 3 9:'slm,ijkl,ijknm->ijksn', # tensor, 3x3 -> 3x3 } k_sk = np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2]))/geomdim[0] if grid[2]%2 == 0: k_sk[grid[2]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011) k_sj = np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1]))/geomdim[1] if grid[1]%2 == 0: k_sj[grid[1]//2] = 0 # Nyquist freq=0 for even grid (Johnson, MIT, 2011) k_si = np.arange(grid[0]//2+1)/geomdim[2] kk, kj, ki = np.meshgrid(k_sk,k_sj,k_si,indexing = 'ij') k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3).astype('c16') e = np.zeros((3, 3, 3)) e[0, 1, 2] = e[1, 2, 0] = e[2, 0, 1] = 1.0 # Levi-Civita symbols e[0, 2, 1] = e[2, 1, 0] = e[1, 0, 2] = -1.0 curl_fourier = np.einsum(einsums[n],e,k_s,field_fourier)*TWOPIIMG return np.fft.irfftn(curl_fourier,axes=(0,1,2),s=shapeFFT).reshape([N,n]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """ Add column(s) containing curl of requested column(s). Operates on periodic ordered three-dimensional data sets of vector and tensor fields. """, version = scriptID) parser.add_option('-p','--pos','--periodiccellcenter', dest = 'pos', type = 'string', metavar = 'string', help = 'label of coordinates [%default]') parser.add_option('-l','--label', dest = 'data', action = 'extend', metavar = '', help = 'label(s) of field values') parser.set_defaults(pos = 'pos', ) (options,filenames) = parser.parse_args() if options.data is None: parser.error('no data column specified.') # --- define possible data types ------------------------------------------------------------------- datatypes = { 3: {'name': 'vector', 'shape': [3], }, 9: {'name': 'tensor', 'shape': [3,3], }, } # --- loop over input files ------------------------------------------------------------------------ if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name,buffered = False) except: continue damask.util.report(scriptName,name) # --- interpret header ---------------------------------------------------------------------------- table.head_read() remarks = [] errors = [] active = [] coordDim = table.label_dimension(options.pos) if coordDim != 3: errors.append('coordinates "{}" must be three-dimensional.'.format(options.pos)) else: coordCol = table.label_index(options.pos) for me in options.data: dim = table.label_dimension(me) if dim in datatypes: active.append(merge_dicts({'label':me},datatypes[dim])) remarks.append('differentiating {} "{}"...'.format(datatypes[dim]['name'],me)) else: remarks.append('skipping "{}" of dimension {}...'.format(me,dim) if dim != -1 else \ '"{}" not found...'.format(me) ) if remarks != []: damask.util.croak(remarks) if errors != []: damask.util.croak(errors) table.close(dismiss = True) continue # ------------------------------------------ assemble header -------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) for data in active: table.labels_append(['{}_curlFFT({})'.format(i+1,data['label']) for i in range(np.prod(np.array(data['shape'])))]) # extend ASCII header with new labels table.head_write() # --------------- figure out size and grid --------------------------------------------------------- table.data_readArray() coords = [np.unique(table.data[:,coordCol+i]) for i in range(3)] mincorner = np.array(map(min,coords)) maxcorner = np.array(map(max,coords)) grid = np.array(map(len,coords),'i') size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1) size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other ones # ------------------------------------------ process value field ----------------------------------- stack = [table.data] for data in active: # we need to reverse order here, because x is fastest,ie rightmost, but leftmost in our x,y,z notation stack.append(curlFFT(size[::-1], table.data[:,table.label_indexrange(data['label'])]. reshape(grid[::-1].tolist()+data['shape']))) # ------------------------------------------ output result ----------------------------------------- if len(stack) > 1: table.data = np.hstack(tuple(stack)) table.data_writeArray('%.12g') # ------------------------------------------ output finalization ----------------------------------- table.close() # close input ASCII table (works for stdin)