!* $Id: mpie_spectral.f90 665 2010-10-13 16:04:44Z MPIE\m.diehl $ !******************************************************************** ! Material subroutine for BVP solution using spectral method ! ! written by P. Eisenlohr, ! F. Roters, ! L. Hantcherli, ! W.A. Counts ! D.D. Tjahjanto ! C. Kords ! M. Diehl ! R. Lebensohn ! ! MPI fuer Eisenforschung, Duesseldorf ! !******************************************************************** ! Usage: ! - start program with mpie_spectral PathToMeshFile/NameOfMesh.mesh ! PathToLoadFile/NameOfLoadFile.load ! - PathToLoadFile will be the working directory ! - make sure the file "material.config" exists in the working ! directory !******************************************************************** program mpie_spectral !******************************************************************** use mpie_interface use prec, only: pInt, pReal use IO use math use CPFEM, only: CPFEM_general use numerics, only: relevantStrain, rTol_crystalliteStress implicit none include 'fftw3.f' !header file for fftw3 (declaring variables). Library file is also needed ! variables to read from loadcase and mesh file real(pReal), dimension(9) :: valuevector ! stores information temporarily from loadcase file integer(pInt), parameter :: maxNchunksInput = 24 ! 4 identifiers, 18 values for the matrices and 2 scalars integer(pInt), dimension (1+maxNchunksInput*2) :: posInput integer(pInt), parameter :: maxNchunksMesh = 7 ! 4 identifiers, 3 values integer(pInt), dimension (1+2*maxNchunksMesh) :: posMesh integer(pInt) unit, N_l, N_s, N_t, N_n ! numbers of identifiers character(len=1024) path, line logical gotResolution,gotDimension,gotHomogenization logical, dimension(9) :: bc_maskvector ! variables storing information from loadcase file real(pReal) timeinc real(pReal), dimension (:,:,:), allocatable :: bc_velocityGrad, & bc_stress ! velocity gradient and stress BC real(pReal), dimension(:), allocatable :: bc_timeIncrement ! length of increment integer(pInt) N_Loadcases, steps integer(pInt), dimension(:), allocatable :: bc_steps ! number of steps logical, dimension(:,:,:,:), allocatable :: bc_mask ! mask of boundary conditions ! variables storing information from mesh file real(pReal) wgt real(pReal), dimension(3) :: meshdimension integer(pInt) homog, prodnn integer(pInt), dimension(3) :: resolution ! stress etc. real(pReal), dimension(3,3) :: ones, zeroes, temp33_Real, damper,& pstress, pstress_av, cstress_av, defgrad_av,& defgradAim, defgradAimOld, defgradAimCorr, defgradAimCorrPrev,& mask_stress, mask_defgrad real(pReal), dimension(3,3,3,3) :: dPdF, c0, s0 real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation real(pReal), dimension(6,6) :: dsde, c066, s066 real(pReal), dimension(:,:,:,:,:), allocatable :: defgrad, defgradold, cstress_field complex(pReal), dimension(:,:,:,:,:), allocatable :: pstress_field, tau complex(pReal), dimension(:,:,:), allocatable :: ddefgrad ! variables storing information for spectral method complex(pReal), dimension(:,:,:,:,:), allocatable :: workfft complex(pReal), dimension(3,3) :: temp33_Complex real(pReal), dimension(3,3) :: xinormdyad real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat real(pReal), dimension(:,:,:,:), allocatable :: xi integer(pInt), dimension(3) :: k_s integer*8, dimension(3,3,3) :: plan_fft ! convergence etc. real(pReal) err_div, err_stress, err_defgrad real(pReal) err_div_tol, err_stress_tol, err_stress_tolrel, sigma0 integer(pInt) itmax, ierr logical errmatinv ! loop variables etc. real(pReal) guessmode ! flip-flop to guess defgrad fluctuation field evolution integer(pInt) i, j, k, l, m, n, p integer(pInt) loadcase, ielem, iter, calcmode, CPFEM_mode real(pReal) temperature ! not used, but needed for call to CPFEM_general !gmsh output character(len=1024) :: nriter character(len=1024) :: nrstep real(pReal), dimension(:,:,:,:), allocatable :: displacement !gmsh output !Initializing bc_maskvector = '' unit = 234_pInt ones = 1.0_pReal zeroes = 0.0_pReal N_l = 0_pInt N_s = 0_pInt N_t = 0_pInt N_n = 0_pInt resolution = 1_pInt; meshdimension = 0.0_pReal err_div_tol = 1.0e-4 itmax = 250_pInt err_stress_tolrel=0.01 temperature = 300.0_pReal gotResolution =.false.; gotDimension =.false.; gotHomogenization = .false. if (IargC() /= 2) call IO_error(102) ! check for correct number of given arguments ! Reading the loadcase file and assign variables path = getLoadcaseName() print*,'Loadcase: ',trim(path) print*,'Workingdir: ',trim(getSolverWorkingDirectoryName()) if (.not. IO_open_file(unit,path)) call IO_error(45,ext_msg = path) rewind(unit) do read(unit,'(a1024)',END = 101) line if (IO_isBlank(line)) cycle ! skip empty lines posInput = IO_stringPos(line,maxNchunksInput) do i = 1, maxNchunksInput, 1 select case (IO_lc(IO_stringValue(line,posInput,i))) case('l','velocitygrad') N_l = N_l+1 case('s','stress') N_s = N_s+1 case('t','time','delta') N_t = N_t+1 case('n','incs','increments','steps') N_n = N_n+1 end select enddo ! count all identifiers to allocate memory and do sanity check if ((N_l /= N_s).or.(N_s /= N_t).or.(N_t /= N_n)) & ! sanity check call IO_error(46,ext_msg = path) !error message for incomplete input file enddo ! allocate memory depending on lines in input file 101 N_Loadcases = N_l allocate (bc_velocityGrad(3,3,N_Loadcases)); bc_velocityGrad = 0.0_pReal allocate (bc_stress(3,3,N_Loadcases)); bc_stress = 0.0_pReal allocate (bc_mask(3,3,2,N_Loadcases)); bc_mask = .false. allocate (bc_timeIncrement(N_Loadcases)); bc_timeIncrement = 0.0_pReal allocate (bc_steps(N_Loadcases)); bc_steps = 0_pInt rewind(unit) i = 0_pInt do read(unit,'(a1024)',END = 200) line if (IO_isBlank(line)) cycle ! skip empty lines i = i + 1 posInput = IO_stringPos(line,maxNchunksInput) do j = 1,maxNchunksInput,2 select case (IO_lc(IO_stringValue(line,posInput,j))) case('l','velocitygrad') valuevector = 0.0_pReal forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#' do k = 1,9 if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the velocity gradient matrix enddo bc_mask(:,:,1,i) = reshape(bc_maskvector,(/3,3/)) bc_velocityGrad(:,:,i) = reshape(valuevector,(/3,3/)) case('s','stress') valuevector = 0.0_pReal forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#' do k = 1,9 if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the bc_stress matrix enddo bc_mask(:,:,2,i) = reshape(bc_maskvector,(/3,3/)) bc_stress(:,:,i) = reshape(valuevector,(/3,3/)) case('t','time','delta') ! increment time bc_timeIncrement(i) = IO_floatValue(line,posInput,j+1) case('n','incs','increments','steps') ! bc_steps bc_steps(i) = IO_intValue(line,posInput,j+1) end select enddo; enddo 200 close(unit) do i = 1, N_Loadcases if (any(bc_mask(:,:,1,i) == bc_mask(:,:,2,i))) call IO_error(47,i) ! bc_mask consistency print '(a,/,3(3(f12.6,x)/))','L',bc_velocityGrad(:,:,i) print '(a,/,3(3(f12.6,x)/))','bc_stress',bc_stress(:,:,i) print '(a,/,3(3(l,x)/))','bc_mask for velocitygrad',bc_mask(:,:,1,i) print '(a,/,3(3(l,x)/))','bc_mask for stress',bc_mask(:,:,2,i) print *,'time',bc_timeIncrement(i) print *,'incs',bc_steps(i) print *, '' enddo !read header of mesh file to get the information needed before the complete mesh file is intepretated by mesh.f90 path = getSolverJobName() print*,'JobName: ',trim(path) if (.not. IO_open_file(unit,trim(path)//InputFileExtension)) call IO_error(101,ext_msg = path) rewind(unit) do read(unit,'(a1024)',END = 100) line if (IO_isBlank(line)) cycle ! skip empty lines posMesh = IO_stringPos(line,maxNchunksMesh) select case ( IO_lc(IO_StringValue(line,posMesh,1)) ) case ('dimension') gotDimension = .true. do i = 2,6,2 select case (IO_lc(IO_stringValue(line,posMesh,i))) case('x') meshdimension(1) = IO_floatValue(line,posMesh,i+1) case('y') meshdimension(2) = IO_floatValue(line,posMesh,i+1) case('z') meshdimension(3) = IO_floatValue(line,posMesh,i+1) end select enddo case ('homogenization') gotHomogenization = .true. homog = IO_intValue(line,posMesh,2) case ('resolution') gotResolution = .true. do i = 2,6,2 select case (IO_lc(IO_stringValue(line,posMesh,i))) case('a') resolution(1) = IO_intValue(line,posMesh,i+1) case('b') resolution(2) = IO_intValue(line,posMesh,i+1) case('c') resolution(3) = IO_intValue(line,posMesh,i+1) end select enddo end select if (gotDimension .and. gotHomogenization .and. gotResolution) exit enddo 100 close(unit) print '(a,/,i4,i4,i4)','resolution a b c', resolution print '(a,/,f6.1,f6.1,f6.1)','dimension x y z', meshdimension print *,'homogenization',homog print *, '' allocate (workfft(resolution(1),resolution(2),resolution(3),3,3)); workfft = 0.0_pReal allocate (gamma_hat(resolution(1),resolution(2),resolution(3),3,3,3,3)); gamma_hat = 0.0_pReal allocate (xi(resolution(1),resolution(2),resolution(3),3)); xi = 0.0_pReal allocate (pstress_field(resolution(1),resolution(2),resolution(3),3,3)); pstress_field = 0.0_pReal allocate (pstress_field(resolution(1),resolution(2),resolution(3),3,3)); pstress_field = 0.0_pReal allocate (tau(resolution(1),resolution(2),resolution(3),3,3)); tau = 0.0_pReal allocate (displacement(resolution(1),resolution(2),resolution(3),3)); displacement = 0.0_pReal allocate (defgrad(resolution(1),resolution(2),resolution(3),3,3)); defgrad = 0.0_pReal allocate (defgradold(resolution(1),resolution(2),resolution(3),3,3)); defgradold = 0.0_pReal allocate (ddefgrad(resolution(1),resolution(2),resolution(3))); ddefgrad = 0.0_pReal ! Initialization of fftw (see manual on fftw.org for more details) call dfftw_init_threads(ierr) call dfftw_plan_with_nthreads(4) do m = 1,3; do n = 1,3 call dfftw_plan_dft_3d(plan_fft(1,m,n),resolution(1),resolution(2),resolution(3),& pstress_field(:,:,:,m,n), workfft(:,:,:,m,n), FFTW_PATIENT, FFTW_FORWARD) !only for calculation of div (P) call dfftw_plan_dft_3d(plan_fft(2,m,n),resolution(1),resolution(2),resolution(3),& tau(:,:,:,m,n), workfft(:,:,:,m,n), FFTW_PATIENT, FFTW_FORWARD) call dfftw_plan_dft_3d(plan_fft(3,m,n),resolution(1),resolution(2),resolution(3),& workfft(:,:,:,m,n), ddefgrad(:,:,:), FFTW_PATIENT, FFTW_BACKWARD) enddo; enddo prodnn = resolution(1)*resolution(2)*resolution(3) wgt = 1_pReal/real(prodnn, pReal) defgradAim = math_I3 defgradAimOld = math_I3 defgrad_av = math_I3 ! Initialization of CPFEM_general (= constitutive law) and of deformation gradient field ielem = 0_pInt c066 = 0.0_pReal do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) defgradold(i,j,k,:,:) = math_I3 !no deformation at the beginning defgrad(i,j,k,:,:) = math_I3 ielem = ielem +1 call CPFEM_general(2,math_I3,math_I3,temperature,0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF) c066 = c066 + dsde enddo; enddo; enddo c066 = c066 * wgt c0 = math_mandel66to3333(c066) call math_invert(6, c066, s066,i, errmatinv) s0 = math_mandel66to3333(s066) !calculation of xinormdyad (to calculate gamma_hat) and xi (waves, for proof of equilibrium) do k = 1, resolution(3) k_s(3) = k-1 if(k > resolution(3)/2+1) k_s(3) = k_s(3)-resolution(3) do j = 1, resolution(2) k_s(2) = j-1 if(j > resolution(2)/2+1) k_s(2) = k_s(2)-resolution(2) do i = 1, resolution(1) k_s(1) = i-1 if(i > resolution(1)/2+1) k_s(1) = k_s(1)-resolution(1) xi(i,j,k,3) = 0.0_pReal if(resolution(3) > 1) xi(i,j,k,3) = real(k_s(3), pReal)/meshdimension(3) xi(i,j,k,2) = real(k_s(2), pReal)/meshdimension(2) xi(i,j,k,1) = real(k_s(1), pReal)/meshdimension(1) if (any(xi(i,j,k,:) /= 0.0_pReal)) then do l = 1,3; do m = 1,3 xinormdyad(l,m) = xi(i,j,k, l)*xi(i,j,k, m)/sum(xi(i,j,k,:)**2) enddo; enddo else xinormdyad = 0.0_pReal endif temp33_Real = math_mul3333xx33(c0, xinormdyad) temp33_Real = math_inv3x3(temp33_Real) do l=1,3; do m=1,3; do n=1,3; do p=1,3 gamma_hat(i,j,k, l,m,n,p) = - temp33_Real(l,n) * xinormdyad(m,p) ! gamma_hat(i,j,k, l,m,n,p) = - 0.5_pReal * temp33_Real(l,n) * xinormdyad(m,p)& ! symmetrization???????? ! - 0.5_pReal * temp33_Real(m,n) * xinormdyad(l,p) enddo; enddo; enddo; enddo enddo; enddo; enddo open(539,file='stress-strain.out') ! Initialization done !************************************************************* !Loop over loadcases defined in the loadcase file do loadcase = 1, N_Loadcases !************************************************************* timeinc = bc_timeIncrement(loadcase)/bc_steps(loadcase) guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step mask_defgrad = merge(ones,zeroes,bc_mask(:,:,1,loadcase)) mask_stress = merge(ones,zeroes,bc_mask(:,:,2,loadcase)) damper = ones/10 !************************************************************* ! loop oper steps defined in input file for current loadcase do steps = 1, bc_steps(loadcase) !************************************************************* temp33_Real = defgradAim defgradAim = defgradAim & ! update macroscopic displacement gradient (defgrad BC) + guessmode * mask_stress * (defgradAim - defgradAimOld) & + math_mul33x33(bc_velocityGrad(:,:,loadcase), defgradAim)*timeinc defgradAimOld = temp33_Real do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) temp33_Real = defgrad(i,j,k,:,:) defgrad(i,j,k,:,:) = defgrad(i,j,k,:,:)& ! old fluctuations as guess for new step, no fluctuations for new loadcase + guessmode * (defgrad(i,j,k,:,:) - defgradold(i,j,k,:,:))& + (1.0_pReal-guessmode) * math_mul33x33(bc_velocityGrad(:,:,loadcase),defgradold(i,j,k,:,:))*timeinc defgradold(i,j,k,:,:) = temp33_Real enddo; enddo; enddo guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase calcmode = 0_pInt ! start calculation of BC fullfillment CPFEM_mode = 1_pInt ! winding forward iter = 0_pInt err_div= 2_pReal * err_div_tol ! go into loop defgradAimCorr = 0.0_pReal ! reset damping calculation damper = damper * 0.9_pReal !************************************************************* ! convergence loop do while( iter <= itmax .and. & (err_div > err_div_tol .or. & err_stress > err_stress_tol)) iter = iter + 1 print '(A,I5.5,tr2,A,I5.5)', ' Step = ',steps,'Iteration = ',iter !************************************************************* ! adjust defgrad to fulfill BCs select case (calcmode) case (0) print *, 'Update Stress Field (constitutive evaluation P(F))' ielem = 0_pInt do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) ielem = ielem + 1 call CPFEM_general(3, defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),& temperature,timeinc,ielem,1_pInt,& cstress,dsde, pstress, dPdF) enddo; enddo; enddo ielem = 0_pInt do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) ielem = ielem + 1 call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1, defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),& ! others get 2 (saves winding forward effort) temperature,timeinc,ielem,1_pInt,& cstress,dsde, pstress, dPdF) CPFEM_mode = 2_pInt pstress_field(i,j,k,:,:) = pstress cstress_field(i,j,k,:,:) = math_mandel6to33(cstress) enddo; enddo; enddo do m = 1,3; do n = 1,3 pstress_av(m,n) = sum(pstress_field(:,:,:,m,n)) * wgt cstress_av(m,n) = sum(cstress_field(:,:,:,m,n)) * wgt defgrad_av(m,n) = sum(defgrad(:,:,:,m,n)) * wgt enddo; enddo err_stress = maxval(abs(mask_stress * (pstress_av - bc_stress(:,:,loadcase)))) err_stress_tol = maxval(abs(pstress_av))*err_stress_tolrel print*, 'Correcting deformation gradient to fullfill BCs' defgradAimCorrPrev = defgradAimCorr defgradAimCorr = -mask_stress * math_mul3333xx33(s0, (mask_stress*(pstress_av - bc_stress(:,:,loadcase)))) do m=1,3; do n =1,3 ! calculate damper (correction is far to strong) if ( sign(1.0_pReal,defgradAimCorr(m,n))/=sign(1.0_pReal,defgradAimCorrPrev(m,n))) then damper(m,n) = max(0.01_pReal,damper(m,n)*0.8) else damper(m,n) = min(1.0_pReal,damper(m,n) *1.2) endif enddo; enddo defgradAimCorr = mask_Stress*(damper * defgradAimCorr) defgradAim = defgradAim + defgradAimCorr do m = 1,3; do n = 1,3 defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradAim(m,n) - defgrad_av(m,n)) !anticipated target minus current state enddo; enddo err_div = 2 * err_div_tol err_defgrad = maxval(abs(mask_defgrad * (defgrad_av - defgradAim))) print '(a,/,3(3(f12.7,x)/))', ' Deformation Gradient: ',defgrad_av(1:3,:) print '(a,/,3(3(f10.4,x)/))', ' Cauchy Stress [MPa]: ',cstress_av(1:3,:)/1.e6 print '(a,E8.2)', ' error defgrad ',err_defgrad print '(2(a,E8.2))', ' error stress ',err_stress,' Tol. = ', err_stress_tol*0.8 if(err_stress < err_stress_tol*0.8) then calcmode = 1 endif ! Using the spectral method to calculate the change of deformation gradient, check divergence of stress field in fourier space case (1) print *, 'Update Stress Field (constitutive evaluation P(F))' ielem = 0_pInt do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) ielem = ielem + 1 call CPFEM_general(3, defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),& temperature,timeinc,ielem,1_pInt,& cstress,dsde, pstress, dPdF) enddo; enddo; enddo ielem = 0_pInt do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) ielem = ielem + 1 call CPFEM_general(2,& defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),& temperature,timeinc,ielem,1_pInt,& cstress,dsde, pstress, dPdF) pstress_field(i,j,k,:,:) = pstress cstress_field(i,j,k,:,:) = math_mandel6to33(cstress) enddo; enddo; enddo do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) tau(i,j,k,:,:) = pstress_field(i,j,k,:,:) - math_mul3333xx33(c0, defgrad(i,j,k,:,:)-math_I3) enddo; enddo; enddo print *, 'Calculating equilibrium using spectral method' err_div = 0.0_pReal; sigma0 = 0.0_pReal do m = 1,3; do n = 1,3 call dfftw_execute_dft(plan_fft(1,m,n), pstress_field(:,:,:,m,n),workfft(:,:,:,m,n)) if(n==3) sigma0 = max(sigma0, sum(abs(workfft(1,1,1,m,:)))) ! L infinity Norm of stress tensor enddo; enddo do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) err_div = err_div + (maxval(abs(math_mul33x3_complex(workfft(i,j,k,:,:),xi(i,j,k,:))))) ! L infinity Norm of div(stress) enddo; enddo; enddo err_div = err_div/real(prodnn, pReal)/sigma0 !weighting of error do m = 1,3; do n = 1,3 call dfftw_execute_dft(plan_fft(2,m,n), tau(:,:,:,m,n), workfft(:,:,:,m,n)) enddo; enddo do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) temp33_Complex = 0.0_pReal do m = 1,3; do n = 1,3 temp33_Complex(m,n) = sum(gamma_hat(i,j,k,m,n,:,:) * workfft(i,j,k,:,:)) enddo; enddo workfft(i,j,k,:,:) = temp33_Complex(:,:) enddo; enddo; enddo workfft(1,1,1,:,:) = zeroes do m = 1,3; do n = 1,3 call dfftw_execute_dft_c2r(plan_fft(3,m,n), workfft(:,:,:,m,n),ddefgrad(:,:,:)) defgrad(:,:,:,m,n) = defgrad_av(m,n) + real(ddefgrad, pReal) * wgt pstress_av(m,n) = sum(pstress_field(:,:,:,m,n))*wgt cstress_av(m,n) = sum(cstress_field(:,:,:,m,n))*wgt defgrad_av(m,n) = sum(defgrad(:,:,:,m,n))*wgt defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradAim(m,n) - defgrad_av(m,n)) !anticipated target minus current state enddo; enddo err_stress = maxval(abs(mask_stress * (pstress_av - bc_stress(:,:,loadcase)))) err_stress_tol = maxval(abs(pstress_av))*err_stress_tolrel !accecpt relativ error specified print '(2(a,E8.2))', ' error divergence ',err_div,' Tol. = ', err_div_tol print '(2(a,E8.2))', ' error stress ',err_stress,' Tol. = ', err_stress_tol if(err_stress > err_stress_tol .and. err_div < err_div_tol) then ! change to calculation of BCs, reset damper etc. calcmode = 0 defgradAimCorr = 0.0_pReal damper = damper * 0.9_pReal endif end select enddo ! end looping when convergency is achieved write(539,'(E12.6,a,E12.6)'),defgrad_av(3,3)-1,' ', cstress_av(3,3) print '(a,/,3(3(f12.7,x)/))', ' Deformation Gradient: ',defgrad_av(1:3,:) print *, '' print '(a,/,3(3(f10.4,x)/))', ' Cauchy Stress [MPa]: ',cstress_av(1:3,:)/1.e6 print '(A)', '************************************************************' ! Postprocessing (gsmh output) temp33_Real(1,:) = 0.0_pReal; temp33_Real(1,3) = -(real(resolution(3))/meshdimension(3)) ! start just below origin do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) if((j==1).and.(i==1)) then temp33_Real(1,:) = temp33_Real(1,:) + math_mul33x3(defgrad(i,j,k,:,:),& (/0.0_pReal,0.0_pReal,(real(resolution(3))/meshdimension(3))/)) temp33_Real(2,:) = temp33_Real(1,:) temp33_Real(3,:) = temp33_Real(1,:) displacement(i,j,k,:) = temp33_Real(1,:) else if(i==1) then temp33_Real(2,:) = temp33_Real(2,:) + math_mul33x3(defgrad(i,j,k,:,:),& (/0.0_pReal,(real(resolution(2))/meshdimension(2)),0.0_pReal/)) temp33_Real(3,:) = temp33_Real(2,:) displacement(i,j,k,:) = temp33_Real(2,:) else temp33_Real(3,:) = temp33_Real(3,:) + math_mul33x3(defgrad(i,j,k,:,:),& (/(real(resolution(1))/meshdimension(1)),0.0_pReal,0.0_pReal/)) displacement(i,j,k,:) = temp33_Real(3,:) endif endif enddo; enddo; enddo write(nriter, *) iter; write(nrstep, *) steps open(589,file = 'stress' //trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh') open(588,file = 'disgrad'//trim(adjustl(nrstep))//'-'//trim(adjustl(nriter))//'_cpfem.msh') write(589, '(4(A, /), I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn write(588, '(4(A, /), I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn ielem = 0_pInt do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) ielem = ielem + 1 write(589, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,k,:) !for deformed configuration write(588, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,k,:) ! write(589, '(4(I10,tr2))'), ielem, i-1,j-1,k-1 !for undeformed configuration ! write(588, '(4(I10,tr2))'), ielem, i-1,j-1,k-1 enddo; enddo; enddo write(589, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn write(588, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn do i = 1, prodnn write(589, '(I10, A, I10)'), i, ' 15 2 1 2', i write(588, '(I10, A, I10)'), i, ' 15 2 1 2', i enddo write(589, '(A)'), '$EndElements' write(588, '(A)'), '$EndElements' write(589, '(8(A, /), I10)'), '$NodeData', '1','"'//trim(adjustl('stress'//trim(adjustl(nrstep))//& '-'//trim(adjustl(nriter))//'_cpfem.msh'))//'"','1','0.0', '3', '0', '9', prodnn write(588, '(8(A, /), I10)'), '$NodeData', '1','"'//trim(adjustl('disgrad'//trim(adjustl(nrstep))//& '-'//trim(adjustl(nriter))//'_cpfem.msh'))//'"','1','0.0', '3', '0', '9', prodnn ielem = 0_pInt do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) ielem = ielem + 1 write(589, '(i10, 9(tr2, E14.8))'), ielem, cstress_field(i,j,k,:,:) write(588, '(i10, 9(tr2, E14.8))'), ielem, defgrad(i,j,k,:,:) - math_I3 enddo; enddo; enddo write(589, *), '$EndNodeData' write(588, *), '$EndNodeData' close(589); close(588) enddo ! end looping over steps in current loadcase enddo ! end looping over loadcases close(539) do i=1,2; do m = 1,3; do n = 1,3 call dfftw_destroy_plan(plan_fft(i,m,n)) enddo; enddo; enddo end program mpie_spectral !******************************************************************** ! quit subroutine to satisfy IO_error ! !******************************************************************** subroutine quit(id) use prec implicit none integer(pInt) id stop end subroutine