! ################################################################### ! Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University ! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without modification, are ! permitted provided that the following conditions are met: ! ! - Redistributions of source code must retain the above copyright notice, this list ! of conditions and the following disclaimer. ! - Redistributions in binary form must reproduce the above copyright notice, this ! list of conditions and the following disclaimer in the documentation and/or ! other materials provided with the distribution. ! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names ! of its contributors may be used to endorse or promote products derived from ! this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE ! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ################################################################### !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief rotation storage and conversion !> @details: rotation is internally stored as quaternion. It can be inialized from different !> representations and also returns itself in different representations. ! ! All methods and naming conventions based on Rowenhorst et al. 2015 ! Convention 1: coordinate frames are right-handed ! Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation ! when viewing from the end point of the rotation axis towards the origin ! Convention 3: rotations will be interpreted in the passive sense ! Convention 4: Euler angle triplets are implemented using the Bunge convention, ! with the angular ranges as [0, 2π],[0, π],[0, 2π] ! Convention 5: the rotation angle ω is limited to the interval [0, π] ! Convention 6: the real part of a quaternion is positive, Re(q) > 0 ! Convention 7: P = -1 !--------------------------------------------------------------------------------------------------- module rotations use IO use math implicit none private real(pReal), parameter :: P = -1.0_pReal !< parameter for orientation conversion. type, public :: tRotation real(pReal), dimension(4) :: q contains procedure, public :: asQuaternion procedure, public :: asEulers procedure, public :: asAxisAngle procedure, public :: asRodrigues procedure, public :: asMatrix !------------------------------------------ procedure, public :: fromQuaternion procedure, public :: fromEulers procedure, public :: fromAxisAngle procedure, public :: fromMatrix !------------------------------------------ procedure, private :: rotRot__ generic, public :: operator(*) => rotRot__ generic, public :: rotate => rotVector,rotTensor2,rotTensor4 procedure, public :: rotVector procedure, public :: rotTensor2 procedure, public :: rotTensor4 procedure, public :: rotStiffness procedure, public :: misorientation procedure, public :: standardize end type tRotation real(pReal), parameter :: & PREF = sqrt(6.0_pReal/PI), & A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), & AP = PI**(2.0_pReal/3.0_pReal), & SC = A/AP, & BETA = A/2.0_pReal, & R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), & R2 = sqrt(2.0_pReal), & PI12 = PI/12.0_pReal, & PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA public :: & rotations_init, & eu2om contains !-------------------------------------------------------------------------------------------------- !> @brief Do self test. !-------------------------------------------------------------------------------------------------- subroutine rotations_init print'(/,1x,a)', '<<<+- rotations init -+>>>'; flush(IO_STDOUT) print'(/,1x,a)', 'D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015' print'( 1x,a)', 'https://doi.org/10.1088/0965-0393/23/8/083501' call selfTest end subroutine rotations_init !--------------------------------------------------------------------------------------------------- ! Return rotation in different representations !--------------------------------------------------------------------------------------------------- pure function asQuaternion(self) class(tRotation), intent(in) :: self real(pReal), dimension(4) :: asQuaternion asQuaternion = self%q end function asQuaternion !--------------------------------------------------------------------------------------------------- pure function asEulers(self) class(tRotation), intent(in) :: self real(pReal), dimension(3) :: asEulers asEulers = qu2eu(self%q) end function asEulers !--------------------------------------------------------------------------------------------------- pure function asAxisAngle(self) class(tRotation), intent(in) :: self real(pReal), dimension(4) :: asAxisAngle asAxisAngle = qu2ax(self%q) end function asAxisAngle !--------------------------------------------------------------------------------------------------- pure function asMatrix(self) class(tRotation), intent(in) :: self real(pReal), dimension(3,3) :: asMatrix asMatrix = qu2om(self%q) end function asMatrix !--------------------------------------------------------------------------------------------------- pure function asRodrigues(self) class(tRotation), intent(in) :: self real(pReal), dimension(4) :: asRodrigues asRodrigues = qu2ro(self%q) end function asRodrigues !--------------------------------------------------------------------------------------------------- pure function asHomochoric(self) class(tRotation), intent(in) :: self real(pReal), dimension(3) :: asHomochoric asHomochoric = qu2ho(self%q) end function asHomochoric !--------------------------------------------------------------------------------------------------- ! Initialize rotation from different representations !--------------------------------------------------------------------------------------------------- subroutine fromQuaternion(self,qu) class(tRotation), intent(out) :: self real(pReal), dimension(4), intent(in) :: qu if (dNeq(norm2(qu),1.0_pReal,1.0e-8_pReal)) call IO_error(402,ext_msg='fromQuaternion') self%q = qu end subroutine fromQuaternion !--------------------------------------------------------------------------------------------------- subroutine fromEulers(self,eu,degrees) class(tRotation), intent(out) :: self real(pReal), dimension(3), intent(in) :: eu logical, intent(in), optional :: degrees real(pReal), dimension(3) :: Eulers if (.not. present(degrees)) then Eulers = eu else Eulers = merge(eu*INRAD,eu,degrees) endif if (any(Eulers<0.0_pReal) .or. any(Eulers>TAU) .or. Eulers(2) > PI) & call IO_error(402,ext_msg='fromEulers') self%q = eu2qu(Eulers) end subroutine fromEulers !--------------------------------------------------------------------------------------------------- subroutine fromAxisAngle(self,ax,degrees,P) class(tRotation), intent(out) :: self real(pReal), dimension(4), intent(in) :: ax logical, intent(in), optional :: degrees integer, intent(in), optional :: P real(pReal) :: angle real(pReal),dimension(3) :: axis if (.not. present(degrees)) then angle = ax(4) else angle = merge(ax(4)*INRAD,ax(4),degrees) endif if (.not. present(P)) then axis = ax(1:3) else axis = ax(1:3) * merge(-1.0_pReal,1.0_pReal,P == 1) if(abs(P) /= 1) call IO_error(402,ext_msg='fromAxisAngle (P)') endif if(dNeq(norm2(axis),1.0_pReal) .or. angle < 0.0_pReal .or. angle > PI) & call IO_error(402,ext_msg='fromAxisAngle') self%q = ax2qu([axis,angle]) end subroutine fromAxisAngle !--------------------------------------------------------------------------------------------------- subroutine fromMatrix(self,om) class(tRotation), intent(out) :: self real(pReal), dimension(3,3), intent(in) :: om if (dNeq(math_det33(om),1.0_pReal,tol=1.0e-5_pReal)) & call IO_error(402,ext_msg='fromMatrix') self%q = om2qu(om) end subroutine fromMatrix !--------------------------------------------------------------------------------------------------- !--------------------------------------------------------------------------------------------------- !> @brief: Rotate a rotation !--------------------------------------------------------------------------------------------------- pure elemental function rotRot__(self,R) result(rRot) type(tRotation) :: rRot class(tRotation), intent(in) :: self,R rRot = tRotation(multiply_quaternion(self%q,R%q)) call rRot%standardize() end function rotRot__ !--------------------------------------------------------------------------------------------------- !> @brief quaternion representation with positive q !--------------------------------------------------------------------------------------------------- pure elemental subroutine standardize(self) class(tRotation), intent(inout) :: self if (sign(1.0_pReal,self%q(1)) < 0.0_pReal) self%q = - self%q end subroutine standardize !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Rotate a vector passively (default) or actively. !--------------------------------------------------------------------------------------------------- pure function rotVector(self,v,active) result(vRot) real(pReal), dimension(3) :: vRot class(tRotation), intent(in) :: self real(pReal), intent(in), dimension(3) :: v logical, intent(in), optional :: active real(pReal), dimension(4) :: v_normed, q logical :: passive if (present(active)) then passive = .not. active else passive = .true. endif if (dEq0(norm2(v))) then vRot = v else v_normed = [0.0_pReal,v]/norm2(v) if (passive) then q = multiply_quaternion(self%q, multiply_quaternion(v_normed, conjugate_quaternion(self%q))) else q = multiply_quaternion(conjugate_quaternion(self%q), multiply_quaternion(v_normed, self%q)) endif vRot = q(2:4)*norm2(v) endif end function rotVector !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Rotate a rank-2 tensor passively (default) or actively. !> @details: Rotation is based on rotation matrix !--------------------------------------------------------------------------------------------------- pure function rotTensor2(self,T,active) result(tRot) real(pReal), dimension(3,3) :: tRot class(tRotation), intent(in) :: self real(pReal), intent(in), dimension(3,3) :: T logical, intent(in), optional :: active logical :: passive if (present(active)) then passive = .not. active else passive = .true. endif if (passive) then tRot = matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix())) else tRot = matmul(matmul(transpose(self%asMatrix()),T),self%asMatrix()) endif end function rotTensor2 !--------------------------------------------------------------------------------------------------- !> @brief Rotate a rank-4 tensor passively (default) or actively. !> @details: rotation is based on rotation matrix !! ToDo: Need to check active/passive !!! !--------------------------------------------------------------------------------------------------- pure function rotTensor4(self,T,active) result(tRot) real(pReal), dimension(3,3,3,3) :: tRot class(tRotation), intent(in) :: self real(pReal), intent(in), dimension(3,3,3,3) :: T logical, intent(in), optional :: active real(pReal), dimension(3,3) :: R integer :: i,j,k,l,m,n,o,p if (present(active)) then R = merge(transpose(self%asMatrix()),self%asMatrix(),active) else R = self%asMatrix() endif tRot = 0.0_pReal do i = 1,3;do j = 1,3;do k = 1,3;do l = 1,3 do m = 1,3;do n = 1,3;do o = 1,3;do p = 1,3 tRot(i,j,k,l) = tRot(i,j,k,l) & + R(i,m) * R(j,n) * R(k,o) * R(l,p) * T(m,n,o,p) enddo; enddo; enddo; enddo; enddo; enddo; enddo; enddo end function rotTensor4 !--------------------------------------------------------------------------------------------------- !> @brief Rotate a rank-4 stiffness tensor in Voigt 6x6 notation passively (default) or actively. !> @details: https://scicomp.stackexchange.com/questions/35600 !! ToDo: Need to check active/passive !!! !--------------------------------------------------------------------------------------------------- pure function rotStiffness(self,C,active) result(cRot) real(pReal), dimension(6,6) :: cRot class(tRotation), intent(in) :: self real(pReal), intent(in), dimension(6,6) :: C logical, intent(in), optional :: active real(pReal), dimension(3,3) :: R real(pReal), dimension(6,6) :: M if (present(active)) then R = merge(transpose(self%asMatrix()),self%asMatrix(),active) else R = self%asMatrix() endif M = reshape([R(1,1)**2, R(2,1)**2, R(3,1)**2, & R(2,1)*R(3,1), R(1,1)*R(3,1), R(1,1)*R(2,1), & R(1,2)**2, R(2,2)**2, R(3,2)**2, & R(2,2)*R(3,2), R(1,2)*R(3,2), R(1,2)*R(2,2), & R(1,3)**2, R(2,3)**2, R(3,3)**2, & R(2,3)*R(3,3), R(1,3)*R(3,3), R(1,3)*R(2,3), & 2.0_pReal*R(1,2)*R(1,3), 2.0_pReal*R(2,2)*R(2,3), 2.0_pReal*R(3,2)*R(3,3), & R(2,2)*R(3,3)+R(2,3)*R(3,2), R(1,2)*R(3,3)+R(1,3)*R(3,2), R(1,2)*R(2,3)+R(1,3)*R(2,2), & 2.0_pReal*R(1,3)*R(1,1), 2.0_pReal*R(2,3)*R(2,1), 2.0_pReal*R(3,3)*R(3,1), & R(2,3)*R(3,1)+R(2,1)*R(3,3), R(1,3)*R(3,1)+R(1,1)*R(3,3), R(1,3)*R(2,1)+R(1,1)*R(2,3), & 2.0_pReal*R(1,1)*R(1,2), 2.0_pReal*R(2,1)*R(2,2), 2.0_pReal*R(3,1)*R(3,2), & R(2,1)*R(3,2)+R(2,2)*R(3,1), R(1,1)*R(3,2)+R(1,2)*R(3,1), R(1,1)*R(2,2)+R(1,2)*R(2,1)],[6,6]) cRot = matmul(M,matmul(C,transpose(M))) end function rotStiffness !--------------------------------------------------------------------------------------------------- !> @brief Misorientation. !--------------------------------------------------------------------------------------------------- pure elemental function misorientation(self,other) type(tRotation) :: misorientation class(tRotation), intent(in) :: self, other misorientation%q = multiply_quaternion(other%q, conjugate_quaternion(self%q)) end function misorientation !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert unit quaternion to rotation matrix. !--------------------------------------------------------------------------------------------------- pure function qu2om(qu) result(om) real(pReal), intent(in), dimension(4) :: qu real(pReal), dimension(3,3) :: om real(pReal) :: qq qq = qu(1)**2-sum(qu(2:4)**2) om(1,1) = qq+2.0_pReal*qu(2)**2 om(2,2) = qq+2.0_pReal*qu(3)**2 om(3,3) = qq+2.0_pReal*qu(4)**2 om(1,2) = 2.0_pReal*(qu(2)*qu(3)-qu(1)*qu(4)) om(2,3) = 2.0_pReal*(qu(3)*qu(4)-qu(1)*qu(2)) om(3,1) = 2.0_pReal*(qu(4)*qu(2)-qu(1)*qu(3)) om(2,1) = 2.0_pReal*(qu(3)*qu(2)+qu(1)*qu(4)) om(3,2) = 2.0_pReal*(qu(4)*qu(3)+qu(1)*qu(2)) om(1,3) = 2.0_pReal*(qu(2)*qu(4)+qu(1)*qu(3)) if (sign(1.0_pReal,P) < 0.0_pReal) om = transpose(om) end function qu2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert unit quaternion to Euler angles. !--------------------------------------------------------------------------------------------------- pure function qu2eu(qu) result(eu) real(pReal), intent(in), dimension(4) :: qu real(pReal), dimension(3) :: eu real(pReal) :: q12, q03, chi q03 = qu(1)**2+qu(4)**2 q12 = qu(2)**2+qu(3)**2 chi = sqrt(q03*q12) degenerated: if (dEq0(q12)) then eu = [atan2(-P*2.0_pReal*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pReal, 0.0_pReal] elseif (dEq0(q03)) then eu = [atan2( 2.0_pReal*qu(2)*qu(3),qu(2)**2-qu(3)**2), PI, 0.0_pReal] else degenerated eu = [atan2((-P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)-qu(3)*qu(4))*chi ), & atan2( 2.0_pReal*chi, q03-q12 ), & atan2(( P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)+qu(3)*qu(4))*chi )] endif degenerated where(sign(1.0_pReal,eu)<0.0_pReal) eu = mod(eu+TAU,[TAU,PI,TAU]) end function qu2eu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert unit quaternion to axis angle pair !--------------------------------------------------------------------------------------------------- pure function qu2ax(qu) result(ax) real(pReal), intent(in), dimension(4) :: qu real(pReal), dimension(4) :: ax real(pReal) :: omega, s if (dEq0(sum(qu(2:4)**2))) then ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] ! axis = [001] elseif (dNeq0(qu(1))) then s = sign(1.0_pReal,qu(1))/norm2(qu(2:4)) omega = 2.0_pReal * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal)) ax = [ qu(2)*s, qu(3)*s, qu(4)*s, omega ] else ax = [ qu(2), qu(3), qu(4), PI ] end if end function qu2ax !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert unit quaternion to Rodrigues vector !--------------------------------------------------------------------------------------------------- pure function qu2ro(qu) result(ro) real(pReal), intent(in), dimension(4) :: qu real(pReal), dimension(4) :: ro real(pReal) :: s real(pReal), parameter :: thr = 1.0e-8_pReal if (abs(qu(1)) < thr) then ro = [qu(2), qu(3), qu(4), IEEE_value(1.0_pReal,IEEE_positive_inf)] else s = norm2(qu(2:4)) if (s < thr) then ro = [0.0_pReal, 0.0_pReal, P, 0.0_pReal] else ro = [qu(2)/s,qu(3)/s,qu(4)/s, tan(acos(math_clip(qu(1),-1.0_pReal,1.0_pReal)))] endif end if end function qu2ro !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert unit quaternion to homochoric !--------------------------------------------------------------------------------------------------- pure function qu2ho(qu) result(ho) real(pReal), intent(in), dimension(4) :: qu real(pReal), dimension(3) :: ho real(pReal) :: omega, f omega = 2.0 * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal)) if (dEq0(omega,tol=1.e-5_pReal)) then ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ] else ho = qu(2:4) f = 0.75_pReal * ( omega - sin(omega) ) ho = ho/norm2(ho)* f**(1.0_pReal/3.0_pReal) end if end function qu2ho !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert unit quaternion to cubochoric !--------------------------------------------------------------------------------------------------- pure function qu2cu(qu) result(cu) real(pReal), intent(in), dimension(4) :: qu real(pReal), dimension(3) :: cu cu = ho2cu(qu2ho(qu)) end function qu2cu !--------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief convert rotation matrix to cubochoric !> @details the original formulation (direct conversion) had (numerical?) issues !--------------------------------------------------------------------------------------------------- pure function om2qu(om) result(qu) real(pReal), intent(in), dimension(3,3) :: om real(pReal), dimension(4) :: qu real(pReal) :: trace,s trace = math_trace33(om) if(trace > 0.0_pReal) then s = 0.5_pReal / sqrt(trace+1.0_pReal) qu = [0.25_pReal/s, (om(3,2)-om(2,3))*s,(om(1,3)-om(3,1))*s,(om(2,1)-om(1,2))*s] else if( om(1,1) > om(2,2) .and. om(1,1) > om(3,3) ) then s = 2.0_pReal * sqrt( 1.0_pReal + om(1,1) - om(2,2) - om(3,3)) qu = [ (om(3,2) - om(2,3)) /s,0.25_pReal * s,(om(1,2) + om(2,1)) / s,(om(1,3) + om(3,1)) / s] elseif (om(2,2) > om(3,3)) then s = 2.0_pReal * sqrt( 1.0_pReal + om(2,2) - om(1,1) - om(3,3)) qu = [ (om(1,3) - om(3,1)) /s,(om(1,2) + om(2,1)) / s,0.25_pReal * s,(om(2,3) + om(3,2)) / s] else s = 2.0_pReal * sqrt( 1.0_pReal + om(3,3) - om(1,1) - om(2,2) ) qu = [ (om(2,1) - om(1,2)) /s,(om(1,3) + om(3,1)) / s,(om(2,3) + om(3,2)) / s,0.25_pReal * s] endif endif if(sign(1.0_pReal,qu(1))<0.0_pReal) qu =-1.0_pReal * qu qu = qu*[1.0_pReal,P,P,P] end function om2qu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief orientation matrix to Euler angles !> @details Two step check for special cases to avoid invalid operations (not needed for python) !--------------------------------------------------------------------------------------------------- pure function om2eu(om) result(eu) real(pReal), intent(in), dimension(3,3) :: om real(pReal), dimension(3) :: eu real(pReal) :: zeta if (dNeq(abs(om(3,3)),1.0_pReal,1.e-8_pReal)) then zeta = 1.0_pReal/sqrt(math_clip(1.0_pReal-om(3,3)**2,1e-64_pReal,1.0_pReal)) eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), & acos(math_clip(om(3,3),-1.0_pReal,1.0_pReal)), & atan2(om(1,3)*zeta, om(2,3)*zeta)] else eu = [atan2(om(1,2),om(1,1)), 0.5_pReal*PI*(1.0_pReal-om(3,3)),0.0_pReal ] end if where(abs(eu) < 1.e-8_pReal) eu = 0.0_pReal where(sign(1.0_pReal,eu)<0.0_pReal) eu = mod(eu+TAU,[TAU,PI,TAU]) end function om2eu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert orientation matrix to axis angle pair !--------------------------------------------------------------------------------------------------- function om2ax(om) result(ax) real(pReal), intent(in), dimension(3,3) :: om real(pReal), dimension(4) :: ax real(pReal) :: t real(pReal), dimension(3) :: Wr, Wi real(pReal), dimension((64+2)*3) :: work real(pReal), dimension(3,3) :: VR, devNull, om_ integer :: ierr, i om_ = om ! first get the rotation angle t = 0.5_pReal * (math_trace33(om) - 1.0_pReal) ax(4) = acos(math_clip(t,-1.0_pReal,1.0_pReal)) if (dEq0(ax(4))) then ax(1:3) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal ] else call dgeev('N','V',3,om_,3,Wr,Wi,devNull,3,VR,3,work,size(work,1),ierr) if (ierr /= 0) error stop 'LAPACK error' #if defined(__GFORTRAN__) && __GNUC__<9 i = maxloc(merge(1,0,cEq(cmplx(Wr,Wi,pReal),cmplx(1.0_pReal,0.0_pReal,pReal),tol=1.0e-14_pReal)),dim=1) #else i = findloc(cEq(cmplx(Wr,Wi,pReal),cmplx(1.0_pReal,0.0_pReal,pReal),tol=1.0e-14_pReal),.true.,dim=1) !find eigenvalue (1,0) #endif if (i == 0) error stop 'om2ax conversion failed' ax(1:3) = VR(1:3,i) where ( dNeq0([om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)])) & ax(1:3) = sign(ax(1:3),-P *[om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)]) endif end function om2ax !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert rotation matrix to Rodrigues vector !--------------------------------------------------------------------------------------------------- pure function om2ro(om) result(ro) real(pReal), intent(in), dimension(3,3) :: om real(pReal), dimension(4) :: ro ro = eu2ro(om2eu(om)) end function om2ro !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert rotation matrix to homochoric !--------------------------------------------------------------------------------------------------- function om2ho(om) result(ho) real(pReal), intent(in), dimension(3,3) :: om real(pReal), dimension(3) :: ho ho = ax2ho(om2ax(om)) end function om2ho !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert rotation matrix to cubochoric !--------------------------------------------------------------------------------------------------- function om2cu(om) result(cu) real(pReal), intent(in), dimension(3,3) :: om real(pReal), dimension(3) :: cu cu = ho2cu(om2ho(om)) end function om2cu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Euler angles to unit quaternion !--------------------------------------------------------------------------------------------------- pure function eu2qu(eu) result(qu) real(pReal), intent(in), dimension(3) :: eu real(pReal), dimension(4) :: qu real(pReal), dimension(3) :: ee real(pReal) :: cPhi, sPhi ee = 0.5_pReal*eu cPhi = cos(ee(2)) sPhi = sin(ee(2)) qu = [ cPhi*cos(ee(1)+ee(3)), & -P*sPhi*cos(ee(1)-ee(3)), & -P*sPhi*sin(ee(1)-ee(3)), & -P*cPhi*sin(ee(1)+ee(3))] if(sign(1.0_pReal,qu(1)) < 0.0_pReal) qu = qu * (-1.0_pReal) end function eu2qu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Euler angles to orientation matrix !--------------------------------------------------------------------------------------------------- pure function eu2om(eu) result(om) real(pReal), intent(in), dimension(3) :: eu real(pReal), dimension(3,3) :: om real(pReal), dimension(3) :: c, s c = cos(eu) s = sin(eu) om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2) om(2,1) = -c(1)*s(3)-s(1)*c(3)*c(2) om(3,1) = s(1)*s(2) om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2) om(2,2) = -s(1)*s(3)+c(1)*c(3)*c(2) om(3,2) = -c(1)*s(2) om(1,3) = s(3)*s(2) om(2,3) = c(3)*s(2) om(3,3) = c(2) where(abs(om)<1.0e-12_pReal) om = 0.0_pReal end function eu2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert euler to axis angle !--------------------------------------------------------------------------------------------------- pure function eu2ax(eu) result(ax) real(pReal), intent(in), dimension(3) :: eu real(pReal), dimension(4) :: ax real(pReal) :: t, delta, tau, alpha, sigma t = tan(eu(2)*0.5_pReal) sigma = 0.5_pReal*(eu(1)+eu(3)) delta = 0.5_pReal*(eu(1)-eu(3)) tau = sqrt(t**2+sin(sigma)**2) alpha = merge(PI, 2.0_pReal*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pReal,tol=1.0e-15_pReal)) if (dEq0(alpha)) then ! return a default identity axis-angle pair ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] else ax(1:3) = -P/tau * [ t*cos(delta), t*sin(delta), sin(sigma) ] ! passive axis-angle pair so a minus sign in front ax(4) = alpha if (sign(1.0_pReal,alpha) < 0.0_pReal) ax = -ax ! ensure alpha is positive end if end function eu2ax !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Euler angles to Rodrigues vector !--------------------------------------------------------------------------------------------------- pure function eu2ro(eu) result(ro) real(pReal), intent(in), dimension(3) :: eu real(pReal), dimension(4) :: ro ro = eu2ax(eu) if (ro(4) >= PI) then ro(4) = IEEE_value(ro(4),IEEE_positive_inf) elseif(dEq0(ro(4))) then ro = [ 0.0_pReal, 0.0_pReal, P, 0.0_pReal ] else ro(4) = tan(ro(4)*0.5_pReal) end if end function eu2ro !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Euler angles to homochoric !--------------------------------------------------------------------------------------------------- pure function eu2ho(eu) result(ho) real(pReal), intent(in), dimension(3) :: eu real(pReal), dimension(3) :: ho ho = ax2ho(eu2ax(eu)) end function eu2ho !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Euler angles to cubochoric !--------------------------------------------------------------------------------------------------- function eu2cu(eu) result(cu) real(pReal), intent(in), dimension(3) :: eu real(pReal), dimension(3) :: cu cu = ho2cu(eu2ho(eu)) end function eu2cu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert axis angle pair to quaternion !--------------------------------------------------------------------------------------------------- pure function ax2qu(ax) result(qu) real(pReal), intent(in), dimension(4) :: ax real(pReal), dimension(4) :: qu real(pReal) :: c, s if (dEq0(ax(4))) then qu = [ 1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal ] else c = cos(ax(4)*0.5_pReal) s = sin(ax(4)*0.5_pReal) qu = [ c, ax(1)*s, ax(2)*s, ax(3)*s ] end if end function ax2qu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert axis angle pair to orientation matrix !--------------------------------------------------------------------------------------------------- pure function ax2om(ax) result(om) real(pReal), intent(in), dimension(4) :: ax real(pReal), dimension(3,3) :: om real(pReal) :: q, c, s, omc c = cos(ax(4)) s = sin(ax(4)) omc = 1.0_pReal-c om(1,1) = ax(1)**2*omc + c om(2,2) = ax(2)**2*omc + c om(3,3) = ax(3)**2*omc + c q = omc*ax(1)*ax(2) om(1,2) = q + s*ax(3) om(2,1) = q - s*ax(3) q = omc*ax(2)*ax(3) om(2,3) = q + s*ax(1) om(3,2) = q - s*ax(1) q = omc*ax(3)*ax(1) om(3,1) = q + s*ax(2) om(1,3) = q - s*ax(2) if (P > 0.0_pReal) om = transpose(om) end function ax2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert axis angle pair to Euler angles !--------------------------------------------------------------------------------------------------- pure function ax2eu(ax) result(eu) real(pReal), intent(in), dimension(4) :: ax real(pReal), dimension(3) :: eu eu = om2eu(ax2om(ax)) end function ax2eu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert axis angle pair to Rodrigues vector !--------------------------------------------------------------------------------------------------- pure function ax2ro(ax) result(ro) real(pReal), intent(in), dimension(4) :: ax real(pReal), dimension(4) :: ro real(pReal), parameter :: thr = 1.0e-7_pReal if (dEq0(ax(4))) then ro = [ 0.0_pReal, 0.0_pReal, P, 0.0_pReal ] else ro(1:3) = ax(1:3) ! we need to deal with the 180 degree case ro(4) = merge(IEEE_value(ro(4),IEEE_positive_inf),tan(ax(4)*0.5_pReal),abs(ax(4)-PI) < thr) end if end function ax2ro !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert axis angle pair to homochoric !--------------------------------------------------------------------------------------------------- pure function ax2ho(ax) result(ho) real(pReal), intent(in), dimension(4) :: ax real(pReal), dimension(3) :: ho real(pReal) :: f f = 0.75_pReal * ( ax(4) - sin(ax(4)) ) f = f**(1.0_pReal/3.0_pReal) ho = ax(1:3) * f end function ax2ho !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert axis angle pair to cubochoric !--------------------------------------------------------------------------------------------------- function ax2cu(ax) result(cu) real(pReal), intent(in), dimension(4) :: ax real(pReal), dimension(3) :: cu cu = ho2cu(ax2ho(ax)) end function ax2cu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Rodrigues vector to unit quaternion !--------------------------------------------------------------------------------------------------- pure function ro2qu(ro) result(qu) real(pReal), intent(in), dimension(4) :: ro real(pReal), dimension(4) :: qu qu = ax2qu(ro2ax(ro)) end function ro2qu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Rodrigues vector to rotation matrix !--------------------------------------------------------------------------------------------------- pure function ro2om(ro) result(om) real(pReal), intent(in), dimension(4) :: ro real(pReal), dimension(3,3) :: om om = ax2om(ro2ax(ro)) end function ro2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Rodrigues vector to Euler angles !--------------------------------------------------------------------------------------------------- pure function ro2eu(ro) result(eu) real(pReal), intent(in), dimension(4) :: ro real(pReal), dimension(3) :: eu eu = om2eu(ro2om(ro)) end function ro2eu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Rodrigues vector to axis angle pair !--------------------------------------------------------------------------------------------------- pure function ro2ax(ro) result(ax) real(pReal), intent(in), dimension(4) :: ro real(pReal), dimension(4) :: ax real(pReal) :: ta, angle ta = ro(4) if (.not. IEEE_is_finite(ta)) then ax = [ ro(1), ro(2), ro(3), PI ] elseif (dEq0(ta)) then ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] else angle = 2.0_pReal*atan(ta) ta = 1.0_pReal/norm2(ro(1:3)) ax = [ ro(1)/ta, ro(2)/ta, ro(3)/ta, angle ] end if end function ro2ax !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Rodrigues vector to homochoric !--------------------------------------------------------------------------------------------------- pure function ro2ho(ro) result(ho) real(pReal), intent(in), dimension(4) :: ro real(pReal), dimension(3) :: ho real(pReal) :: f if (dEq0(norm2(ro(1:3)))) then ho = [ 0.0_pReal, 0.0_pReal, 0.0_pReal ] else f = merge(2.0_pReal*atan(ro(4)) - sin(2.0_pReal*atan(ro(4))),PI, IEEE_is_finite(ro(4))) ho = ro(1:3) * (0.75_pReal*f)**(1.0_pReal/3.0_pReal) end if end function ro2ho !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert Rodrigues vector to cubochoric !--------------------------------------------------------------------------------------------------- pure function ro2cu(ro) result(cu) real(pReal), intent(in), dimension(4) :: ro real(pReal), dimension(3) :: cu cu = ho2cu(ro2ho(ro)) end function ro2cu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert homochoric to unit quaternion !--------------------------------------------------------------------------------------------------- pure function ho2qu(ho) result(qu) real(pReal), intent(in), dimension(3) :: ho real(pReal), dimension(4) :: qu qu = ax2qu(ho2ax(ho)) end function ho2qu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert homochoric to rotation matrix !--------------------------------------------------------------------------------------------------- pure function ho2om(ho) result(om) real(pReal), intent(in), dimension(3) :: ho real(pReal), dimension(3,3) :: om om = ax2om(ho2ax(ho)) end function ho2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert homochoric to Euler angles !--------------------------------------------------------------------------------------------------- pure function ho2eu(ho) result(eu) real(pReal), intent(in), dimension(3) :: ho real(pReal), dimension(3) :: eu eu = ax2eu(ho2ax(ho)) end function ho2eu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert homochoric to axis angle pair !--------------------------------------------------------------------------------------------------- pure function ho2ax(ho) result(ax) real(pReal), intent(in), dimension(3) :: ho real(pReal), dimension(4) :: ax integer :: i real(pReal) :: hmag_squared, s, hm real(pReal), parameter, dimension(16) :: & tfit = [ 1.0000000000018852_pReal, -0.5000000002194847_pReal, & -0.024999992127593126_pReal, -0.003928701544781374_pReal, & -0.0008152701535450438_pReal, -0.0002009500426119712_pReal, & -0.00002397986776071756_pReal, -0.00008202868926605841_pReal, & +0.00012448715042090092_pReal, -0.0001749114214822577_pReal, & +0.0001703481934140054_pReal, -0.00012062065004116828_pReal, & +0.000059719705868660826_pReal, -0.00001980756723965647_pReal, & +0.000003953714684212874_pReal, -0.00000036555001439719544_pReal ] ! normalize h and store the magnitude hmag_squared = sum(ho**2) if (dEq0(hmag_squared)) then ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] else hm = hmag_squared ! convert the magnitude to the rotation angle s = tfit(1) + tfit(2) * hmag_squared do i=3,16 hm = hm*hmag_squared s = s + tfit(i) * hm enddo ax = [ho/sqrt(hmag_squared), 2.0_pReal*acos(s)] end if end function ho2ax !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert homochoric to Rodrigues vector !--------------------------------------------------------------------------------------------------- pure function ho2ro(ho) result(ro) real(pReal), intent(in), dimension(3) :: ho real(pReal), dimension(4) :: ro ro = ax2ro(ho2ax(ho)) end function ho2ro !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief convert homochoric to cubochoric !-------------------------------------------------------------------------- pure function ho2cu(ho) result(cu) real(pReal), intent(in), dimension(3) :: ho real(pReal), dimension(3) :: cu, xyz1, xyz3 real(pReal), dimension(2) :: Tinv, xyz2 real(pReal) :: rs, qxy, q2, sq2, q, tt integer, dimension(3,2) :: p rs = norm2(ho) if (rs > R1+1.e-6_pReal) then cu = IEEE_value(cu,IEEE_positive_inf) return endif center: if (all(dEq0(ho))) then cu = 0.0_pReal else center p = GetPyramidOrder(ho) xyz3 = ho(p(:,1)) ! inverse M_3 xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) ) ! inverse M_2 qxy = sum(xyz2**2) special: if (dEq0(qxy)) then Tinv = 0.0_pReal else special q2 = qxy + maxval(abs(xyz2))**2 sq2 = sqrt(q2) q = (BETA/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2)) tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], & [ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], & abs(xyz2(2)) <= abs(xyz2(1))) endif special ! inverse M_1 xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / PREF ]/SC ! reverse the coordinates back to order according to the original pyramid number cu = xyz1(p(:,2)) endif center end function ho2cu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert cubochoric to unit quaternion !--------------------------------------------------------------------------------------------------- pure function cu2qu(cu) result(qu) real(pReal), intent(in), dimension(3) :: cu real(pReal), dimension(4) :: qu qu = ho2qu(cu2ho(cu)) end function cu2qu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert cubochoric to rotation matrix !--------------------------------------------------------------------------------------------------- pure function cu2om(cu) result(om) real(pReal), intent(in), dimension(3) :: cu real(pReal), dimension(3,3) :: om om = ho2om(cu2ho(cu)) end function cu2om !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert cubochoric to Euler angles !--------------------------------------------------------------------------------------------------- pure function cu2eu(cu) result(eu) real(pReal), intent(in), dimension(3) :: cu real(pReal), dimension(3) :: eu eu = ho2eu(cu2ho(cu)) end function cu2eu !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert cubochoric to axis angle pair !--------------------------------------------------------------------------------------------------- function cu2ax(cu) result(ax) real(pReal), intent(in), dimension(3) :: cu real(pReal), dimension(4) :: ax ax = ho2ax(cu2ho(cu)) end function cu2ax !--------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief convert cubochoric to Rodrigues vector !--------------------------------------------------------------------------------------------------- pure function cu2ro(cu) result(ro) real(pReal), intent(in), dimension(3) :: cu real(pReal), dimension(4) :: ro ro = ho2ro(cu2ho(cu)) end function cu2ro !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief map from 3D cubic grid to 3D ball !-------------------------------------------------------------------------- pure function cu2ho(cu) result(ho) real(pReal), intent(in), dimension(3) :: cu real(pReal), dimension(3) :: ho, LamXYZ, XYZ real(pReal), dimension(2) :: T real(pReal) :: c, s, q real(pReal), parameter :: eps = 1.0e-8_pReal integer, dimension(3,2) :: p integer, dimension(2) :: order if (maxval(abs(cu)) > AP/2.0+eps) then ho = IEEE_value(cu,IEEE_positive_inf) return end if ! transform to the sphere grid via the curved square, and intercept the zero point center: if (all(dEq0(cu))) then ho = 0.0_pReal else center ! get pyramide and scale by grid parameter ratio p = GetPyramidOrder(cu) XYZ = cu(p(:,1)) * SC ! intercept all the points along the z-axis special: if (all(dEq0(XYZ(1:2)))) then LamXYZ = [ 0.0_pReal, 0.0_pReal, PREF * XYZ(3) ] else special order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger c = cos(q) s = sin(q) q = PREK * XYZ(order(2))/ sqrt(R2-c) T = [ (R2*c - 1.0), R2 * s] * q ! transform to sphere grid (inverse Lambert) ! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero] c = sum(T**2) s = PI * c/(24.0*XYZ(3)**2) c = sqrt(PI) * c / sqrt(24.0_pReal) / XYZ(3) q = sqrt( 1.0 - s ) LamXYZ = [ T(order(2)) * q, T(order(1)) * q, PREF * XYZ(3) - c ] end if special ! reverse the coordinates back to order according to the original pyramid number ho = LamXYZ(p(:,2)) end if center end function cu2ho !-------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief Determine to which pyramid a point in a cubic grid belongs. !-------------------------------------------------------------------------- pure function GetPyramidOrder(xyz) real(pReal),intent(in),dimension(3) :: xyz integer, dimension(3,2) :: GetPyramidOrder if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. & ((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then GetPyramidOrder = reshape([[1,2,3],[1,2,3]],[3,2]) else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. & ((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then GetPyramidOrder = reshape([[2,3,1],[3,1,2]],[3,2]) else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. & ((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then GetPyramidOrder = reshape([[3,1,2],[2,3,1]],[3,2]) else GetPyramidOrder = -1 ! should be impossible, but might simplify debugging end if end function GetPyramidOrder !-------------------------------------------------------------------------------------------------- !> @brief Multiply two quaternions. !-------------------------------------------------------------------------------------------------- pure function multiply_quaternion(qu1,qu2) real(pReal), dimension(4), intent(in) :: qu1, qu2 real(pReal), dimension(4) :: multiply_quaternion multiply_quaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4) multiply_quaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3)) multiply_quaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4)) multiply_quaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2)) end function multiply_quaternion !-------------------------------------------------------------------------------------------------- !> @brief Calculate conjugate complex of a quaternion. !-------------------------------------------------------------------------------------------------- pure function conjugate_quaternion(qu) real(pReal), dimension(4), intent(in) :: qu real(pReal), dimension(4) :: conjugate_quaternion conjugate_quaternion = [qu(1), -qu(2), -qu(3), -qu(4)] end function conjugate_quaternion !-------------------------------------------------------------------------------------------------- !> @brief Check correctness of some rotations functions. !-------------------------------------------------------------------------------------------------- subroutine selfTest() type(tRotation) :: R real(pReal), dimension(4) :: qu, ax, ro real(pReal), dimension(3) :: x, eu, ho, v3 real(pReal), dimension(3,3) :: om, t33 real(pReal), dimension(3,3,3,3) :: t3333 real(pReal), dimension(6,6) :: C real :: A,B integer :: i do i = 1, 20 #if defined(__GFORTRAN__) && __GNUC__<9 if(i<7) cycle #endif if(i==1) then qu = om2qu(math_I3) elseif(i==2) then qu = eu2qu([0.0_pReal,0.0_pReal,0.0_pReal]) elseif(i==3) then qu = eu2qu([TAU,PI,TAU]) elseif(i==4) then qu = [0.0_pReal,0.0_pReal,1.0_pReal,0.0_pReal] elseif(i==5) then qu = ro2qu([1.0_pReal,0.0_pReal,0.0_pReal,IEEE_value(1.0_pReal, IEEE_positive_inf)]) elseif(i==6) then qu = ax2qu([1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal]) else call random_number(x) A = sqrt(x(3)) B = sqrt(1-0_pReal -x(3)) qu = [cos(TAU*x(1))*A,& sin(TAU*x(2))*B,& cos(TAU*x(2))*B,& sin(TAU*x(1))*A] if(qu(1)<0.0_pReal) qu = qu * (-1.0_pReal) endif if(.not. quaternion_equal(om2qu(qu2om(qu)),qu)) error stop 'om2qu/qu2om' if(.not. quaternion_equal(eu2qu(qu2eu(qu)),qu)) error stop 'eu2qu/qu2eu' if(.not. quaternion_equal(ax2qu(qu2ax(qu)),qu)) error stop 'ax2qu/qu2ax' if(.not. quaternion_equal(ro2qu(qu2ro(qu)),qu)) error stop 'ro2qu/qu2ro' if(.not. quaternion_equal(ho2qu(qu2ho(qu)),qu)) error stop 'ho2qu/qu2ho' if(.not. quaternion_equal(cu2qu(qu2cu(qu)),qu)) error stop 'cu2qu/qu2cu' om = qu2om(qu) if(.not. quaternion_equal(om2qu(eu2om(om2eu(om))),qu)) error stop 'eu2om/om2eu' if(.not. quaternion_equal(om2qu(ax2om(om2ax(om))),qu)) error stop 'ax2om/om2ax' if(.not. quaternion_equal(om2qu(ro2om(om2ro(om))),qu)) error stop 'ro2om/om2ro' if(.not. quaternion_equal(om2qu(ho2om(om2ho(om))),qu)) error stop 'ho2om/om2ho' if(.not. quaternion_equal(om2qu(cu2om(om2cu(om))),qu)) error stop 'cu2om/om2cu' eu = qu2eu(qu) if(.not. quaternion_equal(eu2qu(ax2eu(eu2ax(eu))),qu)) error stop 'ax2eu/eu2ax' if(.not. quaternion_equal(eu2qu(ro2eu(eu2ro(eu))),qu)) error stop 'ro2eu/eu2ro' if(.not. quaternion_equal(eu2qu(ho2eu(eu2ho(eu))),qu)) error stop 'ho2eu/eu2ho' if(.not. quaternion_equal(eu2qu(cu2eu(eu2cu(eu))),qu)) error stop 'cu2eu/eu2cu' ax = qu2ax(qu) if(.not. quaternion_equal(ax2qu(ro2ax(ax2ro(ax))),qu)) error stop 'ro2ax/ax2ro' if(.not. quaternion_equal(ax2qu(ho2ax(ax2ho(ax))),qu)) error stop 'ho2ax/ax2ho' if(.not. quaternion_equal(ax2qu(cu2ax(ax2cu(ax))),qu)) error stop 'cu2ax/ax2cu' ro = qu2ro(qu) if(.not. quaternion_equal(ro2qu(ho2ro(ro2ho(ro))),qu)) error stop 'ho2ro/ro2ho' if(.not. quaternion_equal(ro2qu(cu2ro(ro2cu(ro))),qu)) error stop 'cu2ro/ro2cu' ho = qu2ho(qu) if(.not. quaternion_equal(ho2qu(cu2ho(ho2cu(ho))),qu)) error stop 'cu2ho/ho2cu' call R%fromMatrix(om) call random_number(v3) if (any(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) & error stop 'rotVector' call random_number(t33) if (any(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) & error stop 'rotTensor2' call random_number(t3333) if (any(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) & error stop 'rotTensor4' call random_number(C) C = C+transpose(C) if (any(dNeq(R%rotStiffness(C), & math_3333toVoigt66_stiffness(R%rotate(math_Voigt66to3333_stiffness(C))),1.0e-12_pReal))) & error stop 'rotStiffness' call R%fromQuaternion(qu * (1.0_pReal + merge(+5.e-9_pReal,-5.e-9_pReal, mod(i,2) == 0))) ! allow reasonable tolerance for ASCII/YAML end do contains pure recursive function quaternion_equal(qu1,qu2) result(ok) real(pReal), intent(in), dimension(4) :: qu1,qu2 logical :: ok ok = all(dEq(qu1,qu2,1.0e-7_pReal)) if(dEq0(qu1(1),1.0e-12_pReal)) & ok = ok .or. all(dEq(-1.0_pReal*qu1,qu2,1.0e-7_pReal)) end function quaternion_equal end subroutine selfTest end module rotations