#!/usr/bin/env python2.7 # -*- coding: UTF-8 no BOM -*- import os,sys import numpy as np from optparse import OptionParser from scipy import ndimage import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog option(s) [ASCIItable(s)]', description = """ Add column(s) containing gradient of requested column(s). Operates on periodic ordered three-dimensional data sets. Deals with both vector- and scalar fields. """, version = scriptID) parser.add_option('-p','--pos','--periodiccellcenter', dest = 'pos', type = 'string', metavar = 'string', help = 'label of coordinates [%default]') parser.add_option('-s','--scalar', dest = 'scalar', action = 'extend', metavar = '', help = 'label(s) of scalar field values') parser.add_option('-o','--order', dest = 'order', type = int, metavar = 'int', help = 'order of the filter') parser.add_option('--sigma', dest = 'sigma', type = float, metavar = 'float', help = 'standard deviation') parser.add_option('--periodic', dest = 'periodic', action = 'store_true', help = 'assume periodic grain structure' ) parser.set_defaults(pos = 'pos', order = 0, sigma = 1, periodic = False ) (options,filenames) = parser.parse_args() if options.scalar is None: parser.error('no data column specified.') # --- loop over input files ------------------------------------------------------------------------ if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name,buffered = False) except: continue damask.util.report(scriptName,name) # ------------------------------------------ read header ------------------------------------------ table.head_read() # ------------------------------------------ sanity checks ---------------------------------------- items = { 'scalar': {'dim': 1, 'shape': [1], 'labels':options.scalar, 'active':[], 'column': []}, } errors = [] remarks = [] column = {} if table.label_dimension(options.pos) != 3: errors.append('coordinates {} are not a vector.'.format(options.pos)) else: colCoord = table.label_index(options.pos) for type, data in items.iteritems(): for what in (data['labels'] if data['labels'] is not None else []): dim = table.label_dimension(what) if dim != data['dim']: remarks.append('column {} is not a {}.'.format(what,type)) else: items[type]['active'].append(what) items[type]['column'].append(table.label_index(what)) if remarks != []: damask.util.croak(remarks) if errors != []: damask.util.croak(errors) table.close(dismiss = True) continue # ------------------------------------------ assemble header -------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) for type, data in items.iteritems(): for label in data['active']: table.labels_append(['Gauss{}({})'.format(options.sigma,label)]) # extend ASCII header with new labels table.head_write() # --------------- figure out size and grid --------------------------------------------------------- table.data_readArray() coords = [np.unique(table.data[:,colCoord+i]) for i in range(3)] mincorner = np.array(map(min,coords)) maxcorner = np.array(map(max,coords)) grid = np.array(map(len,coords),'i') size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1) size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other ones # ------------------------------------------ process value field ----------------------------------- stack = [table.data] for type, data in items.iteritems(): for i,label in enumerate(data['active']): stack.append(ndimage.filters.gaussian_filter(table.data[:,data['column'][i]], options.sigma,options.order, mode = 'wrap' if options.periodic else 'nearest' ).reshape([table.data.shape[0],1]) ) # ------------------------------------------ output result ----------------------------------------- if len(stack) > 1: table.data = np.hstack(tuple(stack)) table.data_writeArray('%.12g') # ------------------------------------------ output finalization ----------------------------------- table.close() # close input ASCII table (works for stdin)