!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Parses material config file, either solverJobName.materialConfig or material.config !> @details reads the material configuration file, where solverJobName.materialConfig takes !! precedence over material.config and parses the sections 'homogenization', 'crystallite', !! 'phase', 'texture', and 'microstucture' !-------------------------------------------------------------------------------------------------- module material use prec, only: & pReal, & pInt, & tState, & tPlasticState, & tSourceState, & tHomogMapping, & tPhaseMapping, & p_vec, & p_intvec implicit none private character(len=*), parameter, public :: & ELASTICITY_hooke_label = 'hooke', & PLASTICITY_none_label = 'none', & PLASTICITY_isotropic_label = 'isotropic', & PLASTICITY_phenopowerlaw_label = 'phenopowerlaw', & PLASTICITY_phenoplus_label = 'phenoplus', & PLASTICITY_dislotwin_label = 'dislotwin', & PLASTICITY_disloucla_label = 'disloucla', & PLASTICITY_titanmod_label = 'titanmod', & PLASTICITY_nonlocal_label = 'nonlocal', & SOURCE_thermal_dissipation_label = 'thermal_dissipation', & SOURCE_thermal_externalheat_label = 'thermal_externalheat', & SOURCE_damage_isoBrittle_label = 'damage_isobrittle', & SOURCE_damage_isoDuctile_label = 'damage_isoductile', & SOURCE_damage_anisoBrittle_label = 'damage_anisobrittle', & SOURCE_damage_anisoDuctile_label = 'damage_anisoductile', & SOURCE_vacancy_phenoplasticity_label = 'vacancy_phenoplasticity', & SOURCE_vacancy_irradiation_label = 'vacancy_irradiation', & SOURCE_vacancy_thermalfluc_label = 'vacancy_thermalfluctuation', & KINEMATICS_thermal_expansion_label = 'thermal_expansion', & KINEMATICS_cleavage_opening_label = 'cleavage_opening', & KINEMATICS_slipplane_opening_label = 'slipplane_opening', & KINEMATICS_vacancy_strain_label = 'vacancy_strain', & KINEMATICS_hydrogen_strain_label = 'hydrogen_strain', & STIFFNESS_DEGRADATION_damage_label = 'damage', & STIFFNESS_DEGRADATION_porosity_label = 'porosity', & THERMAL_isothermal_label = 'isothermal', & THERMAL_adiabatic_label = 'adiabatic', & THERMAL_conduction_label = 'conduction', & DAMAGE_none_label = 'none', & DAMAGE_local_label = 'local', & DAMAGE_nonlocal_label = 'nonlocal', & VACANCYFLUX_isoconc_label = 'isoconcentration', & VACANCYFLUX_isochempot_label = 'isochemicalpotential', & VACANCYFLUX_cahnhilliard_label = 'cahnhilliard', & POROSITY_none_label = 'none', & POROSITY_phasefield_label = 'phasefield', & HYDROGENFLUX_isoconc_label = 'isoconcentration', & HYDROGENFLUX_cahnhilliard_label = 'cahnhilliard', & HOMOGENIZATION_none_label = 'none', & HOMOGENIZATION_isostrain_label = 'isostrain', & HOMOGENIZATION_rgc_label = 'rgc' enum, bind(c) enumerator :: ELASTICITY_undefined_ID, & ELASTICITY_hooke_ID end enum enum, bind(c) enumerator :: PLASTICITY_undefined_ID, & PLASTICITY_none_ID, & PLASTICITY_isotropic_ID, & PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenoplus_ID, & PLASTICITY_dislotwin_ID, & PLASTICITY_disloucla_ID, & PLASTICITY_titanmod_ID, & PLASTICITY_nonlocal_ID end enum enum, bind(c) enumerator :: SOURCE_undefined_ID, & SOURCE_thermal_dissipation_ID, & SOURCE_thermal_externalheat_ID, & SOURCE_damage_isoBrittle_ID, & SOURCE_damage_isoDuctile_ID, & SOURCE_damage_anisoBrittle_ID, & SOURCE_damage_anisoDuctile_ID, & SOURCE_vacancy_phenoplasticity_ID, & SOURCE_vacancy_irradiation_ID, & SOURCE_vacancy_thermalfluc_ID end enum enum, bind(c) enumerator :: KINEMATICS_undefined_ID, & KINEMATICS_cleavage_opening_ID, & KINEMATICS_slipplane_opening_ID, & KINEMATICS_thermal_expansion_ID, & KINEMATICS_vacancy_strain_ID, & KINEMATICS_hydrogen_strain_ID end enum enum, bind(c) enumerator :: STIFFNESS_DEGRADATION_undefined_ID, & STIFFNESS_DEGRADATION_damage_ID, & STIFFNESS_DEGRADATION_porosity_ID end enum enum, bind(c) enumerator :: THERMAL_isothermal_ID, & THERMAL_adiabatic_ID, & THERMAL_conduction_ID end enum enum, bind(c) enumerator :: DAMAGE_none_ID, & DAMAGE_local_ID, & DAMAGE_nonlocal_ID end enum enum, bind(c) enumerator :: VACANCYFLUX_isoconc_ID, & VACANCYFLUX_isochempot_ID, & VACANCYFLUX_cahnhilliard_ID end enum enum, bind(c) enumerator :: POROSITY_none_ID, & POROSITY_phasefield_ID end enum enum, bind(c) enumerator :: HYDROGENFLUX_isoconc_ID, & HYDROGENFLUX_cahnhilliard_ID end enum enum, bind(c) enumerator :: HOMOGENIZATION_undefined_ID, & HOMOGENIZATION_none_ID, & HOMOGENIZATION_isostrain_ID, & HOMOGENIZATION_rgc_ID end enum character(len=*), parameter, public :: & MATERIAL_configFile = 'material.config', & !< generic name for material configuration file MATERIAL_localFileExt = 'materialConfig' !< extension of solver job name depending material configuration file character(len=*), parameter, public :: & MATERIAL_partHomogenization = 'homogenization', & !< keyword for homogenization part MATERIAL_partCrystallite = 'crystallite', & !< keyword for crystallite part MATERIAL_partPhase = 'phase' !< keyword for phase part integer(kind(ELASTICITY_undefined_ID)), dimension(:), allocatable, public, protected :: & phase_elasticity !< elasticity of each phase integer(kind(PLASTICITY_undefined_ID)), dimension(:), allocatable, public, protected :: & phase_plasticity !< plasticity of each phase integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable, public, protected :: & thermal_type !< thermal transport model integer(kind(DAMAGE_none_ID)), dimension(:), allocatable, public, protected :: & damage_type !< nonlocal damage model integer(kind(VACANCYFLUX_isoconc_ID)), dimension(:), allocatable, public, protected :: & vacancyflux_type !< vacancy transport model integer(kind(POROSITY_none_ID)), dimension(:), allocatable, public, protected :: & porosity_type !< porosity evolution model integer(kind(HYDROGENFLUX_isoconc_ID)), dimension(:), allocatable, public, protected :: & hydrogenflux_type !< hydrogen transport model integer(kind(SOURCE_undefined_ID)), dimension(:,:), allocatable, public, protected :: & phase_source, & !< active sources mechanisms of each phase phase_kinematics, & !< active kinematic mechanisms of each phase phase_stiffnessDegradation !< active stiffness degradation mechanisms of each phase integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable, public, protected :: & homogenization_type !< type of each homogenization character(len=64), dimension(:), allocatable, public, protected :: & phase_name, & !< name of each phase homogenization_name, & !< name of each homogenization crystallite_name !< name of each crystallite setting integer(pInt), public, protected :: & homogenization_maxNgrains, & !< max number of grains in any USED homogenization material_Nphase, & !< number of phases material_Nhomogenization, & !< number of homogenizations material_Nmicrostructure, & !< number of microstructures material_Ncrystallite !< number of crystallite settings integer(pInt), dimension(:), allocatable, public, protected :: & phase_Nsources, & !< number of source mechanisms active in each phase phase_Nkinematics, & !< number of kinematic mechanisms active in each phase phase_NstiffnessDegradations, & !< number of stiffness degradation mechanisms active in each phase phase_Noutput, & !< number of '(output)' items per phase phase_elasticityInstance, & !< instance of particular elasticity of each phase phase_plasticityInstance !< instance of particular plasticity of each phase integer(pInt), dimension(:), allocatable, public, protected :: & crystallite_Noutput !< number of '(output)' items per crystallite setting integer(pInt), dimension(:), allocatable, public, protected :: & homogenization_Ngrains, & !< number of grains in each homogenization homogenization_Noutput, & !< number of '(output)' items per homogenization homogenization_typeInstance, & !< instance of particular type of each homogenization thermal_typeInstance, & !< instance of particular type of each thermal transport damage_typeInstance, & !< instance of particular type of each nonlocal damage vacancyflux_typeInstance, & !< instance of particular type of each vacancy flux porosity_typeInstance, & !< instance of particular type of each porosity model hydrogenflux_typeInstance, & !< instance of particular type of each hydrogen flux microstructure_crystallite !< crystallite setting ID of each microstructure real(pReal), dimension(:), allocatable, public, protected :: & thermal_initialT, & !< initial temperature per each homogenization damage_initialPhi, & !< initial damage per each homogenization vacancyflux_initialCv, & !< initial vacancy concentration per each homogenization porosity_initialPhi, & !< initial posority per each homogenization hydrogenflux_initialCh !< initial hydrogen concentration per each homogenization integer(pInt), dimension(:,:,:), allocatable, public :: & material_phase !< phase (index) of each grain,IP,element integer(pInt), dimension(:,:), allocatable, public :: & material_homog !< homogenization (index) of each IP,element type(tPlasticState), allocatable, dimension(:), public :: & plasticState type(tSourceState), allocatable, dimension(:), public :: & sourceState type(tState), allocatable, dimension(:), public :: & homogState, & thermalState, & damageState, & vacancyfluxState, & porosityState, & hydrogenfluxState integer(pInt), dimension(:,:,:), allocatable, public, protected :: & material_texture !< texture (index) of each grain,IP,element real(pReal), dimension(:,:,:,:), allocatable, public, protected :: & material_EulerAngles !< initial orientation of each grain,IP,element logical, dimension(:), allocatable, public, protected :: & microstructure_active, & microstructure_elemhomo, & !< flag to indicate homogeneous microstructure distribution over element's IPs phase_localPlasticity !< flags phases with local constitutive law character(len=*), parameter, private :: & MATERIAL_partMicrostructure = 'microstructure', & !< keyword for microstructure part MATERIAL_partTexture = 'texture' !< keyword for texture part character(len=64), dimension(:), allocatable, private :: & microstructure_name, & !< name of each microstructure texture_name !< name of each texture character(len=256), dimension(:), allocatable, private :: & texture_ODFfile !< name of each ODF file integer(pInt), private :: & material_Ntexture, & !< number of textures microstructure_maxNconstituents, & !< max number of constituents in any phase texture_maxNgauss, & !< max number of Gauss components in any texture texture_maxNfiber !< max number of Fiber components in any texture integer(pInt), dimension(:), allocatable, private :: & microstructure_Nconstituents, & !< number of constituents in each microstructure texture_symmetry, & !< number of symmetric orientations per texture texture_Ngauss, & !< number of Gauss components per texture texture_Nfiber !< number of Fiber components per texture integer(pInt), dimension(:,:), allocatable, private :: & microstructure_phase, & !< phase IDs of each microstructure microstructure_texture !< texture IDs of each microstructure real(pReal), dimension(:,:), allocatable, private :: & microstructure_fraction !< vol fraction of each constituent in microstructure real(pReal), dimension(:,:,:), allocatable, private :: & material_volume, & !< volume of each grain,IP,element texture_Gauss, & !< data of each Gauss component texture_Fiber, & !< data of each Fiber component texture_transformation !< transformation for each texture logical, dimension(:), allocatable, private :: & homogenization_active integer(pInt), dimension(:,:,:), allocatable, public :: phaseAt !< phase ID of every material point (ipc,ip,el) integer(pInt), dimension(:,:,:), allocatable, public :: phasememberAt !< memberID of given phase at every material point (ipc,ip,el) integer(pInt), dimension(:,:,:), allocatable, public, target :: mappingCrystallite integer(pInt), dimension(:,:,:), allocatable, public, target :: mappingHomogenization !< mapping from material points to offset in heterogenous state/field integer(pInt), dimension(:,:), allocatable, public, target :: mappingHomogenizationConst !< mapping from material points to offset in constant state/field type(tHomogMapping), allocatable, dimension(:), public :: & thermalMapping, & !< mapping for thermal state/fields damageMapping, & !< mapping for damage state/fields vacancyfluxMapping, & !< mapping for vacancy conc state/fields porosityMapping, & !< mapping for porosity state/fields hydrogenfluxMapping !< mapping for hydrogen conc state/fields type(p_vec), allocatable, dimension(:), public :: & temperature, & !< temperature field damage, & !< damage field vacancyConc, & !< vacancy conc field porosity, & !< porosity field hydrogenConc, & !< hydrogen conc field temperatureRate, & !< temperature change rate field vacancyConcRate, & !< vacancy conc change field hydrogenConcRate !< hydrogen conc change field public :: & material_init, & ELASTICITY_hooke_ID ,& PLASTICITY_none_ID, & PLASTICITY_isotropic_ID, & PLASTICITY_phenopowerlaw_ID, & PLASTICITY_phenoplus_ID, & PLASTICITY_dislotwin_ID, & PLASTICITY_disloucla_ID, & PLASTICITY_titanmod_ID, & PLASTICITY_nonlocal_ID, & SOURCE_thermal_dissipation_ID, & SOURCE_thermal_externalheat_ID, & SOURCE_damage_isoBrittle_ID, & SOURCE_damage_isoDuctile_ID, & SOURCE_damage_anisoBrittle_ID, & SOURCE_damage_anisoDuctile_ID, & SOURCE_vacancy_phenoplasticity_ID, & SOURCE_vacancy_irradiation_ID, & SOURCE_vacancy_thermalfluc_ID, & KINEMATICS_cleavage_opening_ID, & KINEMATICS_slipplane_opening_ID, & KINEMATICS_thermal_expansion_ID, & KINEMATICS_vacancy_strain_ID, & KINEMATICS_hydrogen_strain_ID, & STIFFNESS_DEGRADATION_damage_ID, & STIFFNESS_DEGRADATION_porosity_ID, & THERMAL_isothermal_ID, & THERMAL_adiabatic_ID, & THERMAL_conduction_ID, & DAMAGE_none_ID, & DAMAGE_local_ID, & DAMAGE_nonlocal_ID, & VACANCYFLUX_isoconc_ID, & VACANCYFLUX_isochempot_ID, & VACANCYFLUX_cahnhilliard_ID, & POROSITY_none_ID, & POROSITY_phasefield_ID, & HYDROGENFLUX_isoconc_ID, & HYDROGENFLUX_cahnhilliard_ID, & HOMOGENIZATION_none_ID, & HOMOGENIZATION_isostrain_ID, & HOMOGENIZATION_RGC_ID private :: & material_parseHomogenization, & material_parseMicrostructure, & material_parseCrystallite, & material_parsePhase, & material_parseTexture, & material_populateGrains contains !-------------------------------------------------------------------------------------------------- !> @brief parses material configuration file !> @details figures out if solverJobName.materialConfig is present, if not looks for !> material.config !-------------------------------------------------------------------------------------------------- subroutine material_init() use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use IO, only: & IO_error, & IO_open_file, & IO_open_jobFile_stat, & IO_timeStamp use debug, only: & debug_level, & debug_material, & debug_levelBasic, & debug_levelExtensive use mesh, only: & mesh_maxNips, & mesh_NcpElems, & mesh_element, & FE_Nips, & FE_geomtype use numerics, only: & worldrank implicit none integer(pInt), parameter :: FILEUNIT = 200_pInt integer(pInt) :: m,c,h, myDebug, myPhase, myHomog integer(pInt) :: & g, & !< grain number i, & !< integration point number e, & !< element number phase integer(pInt), dimension(:), allocatable :: ConstitutivePosition integer(pInt), dimension(:), allocatable :: CrystallitePosition integer(pInt), dimension(:), allocatable :: HomogenizationPosition myDebug = debug_level(debug_material) mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- material init -+>>>' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present... call IO_open_file(FILEUNIT,material_configFile) ! ...open material.config file call material_parseHomogenization(FILEUNIT,material_partHomogenization) if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Homogenization parsed'; flush(6) call material_parseMicrostructure(FILEUNIT,material_partMicrostructure) if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Microstructure parsed'; flush(6) call material_parseCrystallite(FILEUNIT,material_partCrystallite) if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Crystallite parsed'; flush(6) call material_parseTexture(FILEUNIT,material_partTexture) if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Texture parsed'; flush(6) call material_parsePhase(FILEUNIT,material_partPhase) if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Phase parsed'; flush(6) close(FILEUNIT) allocate(plasticState (material_Nphase)) allocate(sourceState (material_Nphase)) do myPhase = 1,material_Nphase allocate(sourceState(myPhase)%p(phase_Nsources(myPhase))) enddo allocate(homogState (material_Nhomogenization)) allocate(thermalState (material_Nhomogenization)) allocate(damageState (material_Nhomogenization)) allocate(vacancyfluxState (material_Nhomogenization)) allocate(porosityState (material_Nhomogenization)) allocate(hydrogenfluxState (material_Nhomogenization)) allocate(thermalMapping (material_Nhomogenization)) allocate(damageMapping (material_Nhomogenization)) allocate(vacancyfluxMapping (material_Nhomogenization)) allocate(porosityMapping (material_Nhomogenization)) allocate(hydrogenfluxMapping(material_Nhomogenization)) allocate(temperature (material_Nhomogenization)) allocate(damage (material_Nhomogenization)) allocate(vacancyConc (material_Nhomogenization)) allocate(porosity (material_Nhomogenization)) allocate(hydrogenConc (material_Nhomogenization)) allocate(temperatureRate (material_Nhomogenization)) allocate(vacancyConcRate (material_Nhomogenization)) allocate(hydrogenConcRate (material_Nhomogenization)) do m = 1_pInt,material_Nmicrostructure if(microstructure_crystallite(m) < 1_pInt .or. & microstructure_crystallite(m) > material_Ncrystallite) & call IO_error(150_pInt,m,ext_msg='crystallite') if(minval(microstructure_phase(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. & maxval(microstructure_phase(1:microstructure_Nconstituents(m),m)) > material_Nphase) & call IO_error(150_pInt,m,ext_msg='phase') if(minval(microstructure_texture(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. & maxval(microstructure_texture(1:microstructure_Nconstituents(m),m)) > material_Ntexture) & call IO_error(150_pInt,m,ext_msg='texture') if(microstructure_Nconstituents(m) < 1_pInt) & call IO_error(151_pInt,m) enddo debugOut: if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then write(6,'(/,a,/)') ' MATERIAL configuration' write(6,'(a32,1x,a16,1x,a6)') 'homogenization ','type ','grains' do h = 1_pInt,material_Nhomogenization write(6,'(1x,a32,1x,a16,1x,i6)') homogenization_name(h),homogenization_type(h),homogenization_Ngrains(h) enddo write(6,'(/,a14,18x,1x,a11,1x,a12,1x,a13)') 'microstructure','crystallite','constituents','homogeneous' do m = 1_pInt,material_Nmicrostructure write(6,'(1x,a32,1x,i11,1x,i12,1x,l13)') microstructure_name(m), & microstructure_crystallite(m), & microstructure_Nconstituents(m), & microstructure_elemhomo(m) if (microstructure_Nconstituents(m) > 0_pInt) then do c = 1_pInt,microstructure_Nconstituents(m) write(6,'(a1,1x,a32,1x,a32,1x,f7.4)') '>',phase_name(microstructure_phase(c,m)),& texture_name(microstructure_texture(c,m)),& microstructure_fraction(c,m) enddo write(6,*) endif enddo endif debugOut call material_populateGrains allocate(phaseAt ( homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0_pInt) allocate(phasememberAt ( homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0_pInt) allocate(mappingHomogenization (2, mesh_maxNips,mesh_NcpElems),source=0_pInt) allocate(mappingCrystallite (2,homogenization_maxNgrains, mesh_NcpElems),source=0_pInt) allocate(mappingHomogenizationConst( mesh_maxNips,mesh_NcpElems),source=1_pInt) allocate(ConstitutivePosition (material_Nphase), source=0_pInt) allocate(HomogenizationPosition(material_Nhomogenization),source=0_pInt) allocate(CrystallitePosition (material_Nphase), source=0_pInt) ElemLoop:do e = 1_pInt,mesh_NcpElems myHomog = mesh_element(3,e) IPloop:do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) HomogenizationPosition(myHomog) = HomogenizationPosition(myHomog) + 1_pInt mappingHomogenization(1:2,i,e) = [HomogenizationPosition(myHomog),myHomog] GrainLoop:do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e)) phase = material_phase(g,i,e) ConstitutivePosition(phase) = ConstitutivePosition(phase)+1_pInt ! not distinguishing between instances of same phase phaseAt(g,i,e) = phase phasememberAt(g,i,e) = ConstitutivePosition(phase) enddo GrainLoop enddo IPloop enddo ElemLoop ! hack needed to initialize field values used during constitutive and crystallite initializations do myHomog = 1,material_Nhomogenization thermalMapping (myHomog)%p => mappingHomogenizationConst damageMapping (myHomog)%p => mappingHomogenizationConst vacancyfluxMapping (myHomog)%p => mappingHomogenizationConst porosityMapping (myHomog)%p => mappingHomogenizationConst hydrogenfluxMapping(myHomog)%p => mappingHomogenizationConst allocate(temperature (myHomog)%p(1), source=thermal_initialT(myHomog)) allocate(damage (myHomog)%p(1), source=damage_initialPhi(myHomog)) allocate(vacancyConc (myHomog)%p(1), source=vacancyflux_initialCv(myHomog)) allocate(porosity (myHomog)%p(1), source=porosity_initialPhi(myHomog)) allocate(hydrogenConc (myHomog)%p(1), source=hydrogenflux_initialCh(myHomog)) allocate(temperatureRate (myHomog)%p(1), source=0.0_pReal) allocate(vacancyConcRate (myHomog)%p(1), source=0.0_pReal) allocate(hydrogenConcRate(myHomog)%p(1), source=0.0_pReal) enddo end subroutine material_init !-------------------------------------------------------------------------------------------------- !> @brief parses the homogenization part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseHomogenization(fileUnit,myPart) use IO, only: & IO_read, & IO_globalTagInPart, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringValue, & IO_intValue, & IO_floatValue, & IO_stringPos, & IO_EOF use mesh, only: & mesh_element implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: Nsections, section, s, p character(len=65536) :: & tag, line logical :: echo echo = IO_globalTagInPart(fileUnit,myPart,'/echo/') Nsections = IO_countSections(fileUnit,myPart) material_Nhomogenization = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(homogenization_name(Nsections)); homogenization_name = '' allocate(homogenization_type(Nsections), source=HOMOGENIZATION_undefined_ID) allocate(thermal_type(Nsections), source=THERMAL_isothermal_ID) allocate(damage_type (Nsections), source=DAMAGE_none_ID) allocate(vacancyflux_type(Nsections), source=VACANCYFLUX_isoconc_ID) allocate(porosity_type (Nsections), source=POROSITY_none_ID) allocate(hydrogenflux_type(Nsections), source=HYDROGENFLUX_isoconc_ID) allocate(homogenization_typeInstance(Nsections), source=0_pInt) allocate(thermal_typeInstance(Nsections), source=0_pInt) allocate(damage_typeInstance(Nsections), source=0_pInt) allocate(vacancyflux_typeInstance(Nsections), source=0_pInt) allocate(porosity_typeInstance(Nsections), source=0_pInt) allocate(hydrogenflux_typeInstance(Nsections), source=0_pInt) allocate(homogenization_Ngrains(Nsections), source=0_pInt) allocate(homogenization_Noutput(Nsections), source=0_pInt) allocate(homogenization_active(Nsections), source=.false.) !!!!!!!!!!!!!!! allocate(thermal_initialT(Nsections), source=300.0_pReal) allocate(damage_initialPhi(Nsections), source=1.0_pReal) allocate(vacancyflux_initialCv(Nsections), source=0.0_pReal) allocate(porosity_initialPhi(Nsections), source=1.0_pReal) allocate(hydrogenflux_initialCh(Nsections), source=0.0_pReal) forall (s = 1_pInt:Nsections) homogenization_active(s) = any(mesh_element(3,:) == s) ! current homogenization used in model? Homogenization view, maximum operations depend on maximum number of homog schemes homogenization_Noutput = IO_countTagInPart(fileUnit,myPart,'(output)',Nsections) rewind(fileUnit) line = '' ! to have it initialized section = 0_pInt ! - " - do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <homogenization> line = IO_read(fileUnit) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= IO_EOF) ! read through sections of material part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt homogenization_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('type') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case(HOMOGENIZATION_NONE_label) homogenization_type(section) = HOMOGENIZATION_NONE_ID homogenization_Ngrains(section) = 1_pInt case(HOMOGENIZATION_ISOSTRAIN_label) homogenization_type(section) = HOMOGENIZATION_ISOSTRAIN_ID case(HOMOGENIZATION_RGC_label) homogenization_type(section) = HOMOGENIZATION_RGC_ID case default call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select homogenization_typeInstance(section) = & count(homogenization_type==homogenization_type(section)) ! count instances case ('thermal') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case(THERMAL_isothermal_label) thermal_type(section) = THERMAL_isothermal_ID case(THERMAL_adiabatic_label) thermal_type(section) = THERMAL_adiabatic_ID case(THERMAL_conduction_label) thermal_type(section) = THERMAL_conduction_ID case default call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('damage') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case(DAMAGE_NONE_label) damage_type(section) = DAMAGE_none_ID case(DAMAGE_LOCAL_label) damage_type(section) = DAMAGE_local_ID case(DAMAGE_NONLOCAL_label) damage_type(section) = DAMAGE_nonlocal_ID case default call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('vacancyflux') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case(VACANCYFLUX_isoconc_label) vacancyflux_type(section) = VACANCYFLUX_isoconc_ID case(VACANCYFLUX_isochempot_label) vacancyflux_type(section) = VACANCYFLUX_isochempot_ID case(VACANCYFLUX_cahnhilliard_label) vacancyflux_type(section) = VACANCYFLUX_cahnhilliard_ID case default call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('porosity') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case(POROSITY_NONE_label) porosity_type(section) = POROSITY_none_ID case(POROSITY_phasefield_label) porosity_type(section) = POROSITY_phasefield_ID case default call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('hydrogenflux') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case(HYDROGENFLUX_isoconc_label) hydrogenflux_type(section) = HYDROGENFLUX_isoconc_ID case(HYDROGENFLUX_cahnhilliard_label) hydrogenflux_type(section) = HYDROGENFLUX_cahnhilliard_ID case default call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('nconstituents','ngrains') homogenization_Ngrains(section) = IO_intValue(line,chunkPos,2_pInt) case ('initialtemperature','initialt') thermal_initialT(section) = IO_floatValue(line,chunkPos,2_pInt) case ('initialdamage') damage_initialPhi(section) = IO_floatValue(line,chunkPos,2_pInt) case ('initialvacancyconc','initialcv') vacancyflux_initialCv(section) = IO_floatValue(line,chunkPos,2_pInt) case ('initialporosity') porosity_initialPhi(section) = IO_floatValue(line,chunkPos,2_pInt) case ('initialhydrogenconc','initialch') hydrogenflux_initialCh(section) = IO_floatValue(line,chunkPos,2_pInt) end select endif enddo do p=1_pInt, Nsections homogenization_typeInstance(p) = count(homogenization_type(1:p) == homogenization_type(p)) thermal_typeInstance(p) = count(thermal_type (1:p) == thermal_type (p)) damage_typeInstance(p) = count(damage_type (1:p) == damage_type (p)) vacancyflux_typeInstance(p) = count(vacancyflux_type (1:p) == vacancyflux_type (p)) porosity_typeInstance(p) = count(porosity_type (1:p) == porosity_type (p)) hydrogenflux_typeInstance(p) = count(hydrogenflux_type (1:p) == hydrogenflux_type (p)) enddo homogenization_maxNgrains = maxval(homogenization_Ngrains,homogenization_active) end subroutine material_parseHomogenization !-------------------------------------------------------------------------------------------------- !> @brief parses the microstructure part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseMicrostructure(fileUnit,myPart) use IO use mesh, only: & mesh_element, & mesh_NcpElems implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: Nsections, section, constituent, e, i character(len=65536) :: & tag, line logical :: echo echo = IO_globalTagInPart(fileUnit,myPart,'/echo/') Nsections = IO_countSections(fileUnit,myPart) material_Nmicrostructure = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(microstructure_name(Nsections)); microstructure_name = '' allocate(microstructure_crystallite(Nsections), source=0_pInt) allocate(microstructure_Nconstituents(Nsections), source=0_pInt) allocate(microstructure_active(Nsections), source=.false.) allocate(microstructure_elemhomo(Nsections), source=.false.) if(any(mesh_element(4,1:mesh_NcpElems) > Nsections)) & call IO_error(155_pInt,ext_msg='Microstructure in geometry > Sections in material.config') forall (e = 1_pInt:mesh_NcpElems) microstructure_active(mesh_element(4,e)) = .true. ! current microstructure used in model? Elementwise view, maximum N operations for N elements microstructure_Nconstituents = IO_countTagInPart(fileUnit,myPart,'(constituent)',Nsections) microstructure_maxNconstituents = maxval(microstructure_Nconstituents) microstructure_elemhomo = IO_spotTagInPart(fileUnit,myPart,'/elementhomogeneous/',Nsections) allocate(microstructure_phase (microstructure_maxNconstituents,Nsections),source=0_pInt) allocate(microstructure_texture (microstructure_maxNconstituents,Nsections),source=0_pInt) allocate(microstructure_fraction(microstructure_maxNconstituents,Nsections),source=0.0_pReal) rewind(fileUnit) line = '' ! to have it initialized section = 0_pInt ! - " - constituent = 0_pInt ! - " - do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <microstructure> line = IO_read(fileUnit) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= IO_EOF) ! read through sections of material part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt constituent = 0_pInt microstructure_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('crystallite') microstructure_crystallite(section) = IO_intValue(line,chunkPos,2_pInt) case ('(constituent)') constituent = constituent + 1_pInt do i=2_pInt,6_pInt,2_pInt tag = IO_lc(IO_stringValue(line,chunkPos,i)) select case (tag) case('phase') microstructure_phase(constituent,section) = IO_intValue(line,chunkPos,i+1_pInt) case('texture') microstructure_texture(constituent,section) = IO_intValue(line,chunkPos,i+1_pInt) case('fraction') microstructure_fraction(constituent,section) = IO_floatValue(line,chunkPos,i+1_pInt) end select enddo end select endif enddo end subroutine material_parseMicrostructure !-------------------------------------------------------------------------------------------------- !> @brief parses the crystallite part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseCrystallite(fileUnit,myPart) use IO, only: & IO_read, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_globalTagInPart, & IO_getTag, & IO_lc, & IO_isBlank, & IO_EOF implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: fileUnit integer(pInt) :: Nsections, & section character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(fileUnit,myPart,'/echo/') Nsections = IO_countSections(fileUnit,myPart) material_Ncrystallite = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(crystallite_name(Nsections)); crystallite_name = '' allocate(crystallite_Noutput(Nsections), source=0_pInt) crystallite_Noutput = IO_countTagInPart(fileUnit,myPart,'(output)',Nsections) rewind(fileUnit) line = '' ! to have it initialized section = 0_pInt ! - " - do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <Crystallite> line = IO_read(fileUnit) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= IO_EOF) ! read through sections of material part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt crystallite_name(section) = IO_getTag(line,'[',']') endif enddo end subroutine material_parseCrystallite !-------------------------------------------------------------------------------------------------- !> @brief parses the phase part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parsePhase(fileUnit,myPart) use IO, only: & IO_read, & IO_globalTagInPart, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_getTag, & IO_spotTagInPart, & IO_lc, & IO_isBlank, & IO_stringValue, & IO_stringPos, & IO_EOF implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: Nsections, section, sourceCtr, kinematicsCtr, stiffDegradationCtr, p character(len=65536) :: & tag,line logical :: echo echo = IO_globalTagInPart(fileUnit,myPart,'/echo/') Nsections = IO_countSections(fileUnit,myPart) material_Nphase = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(phase_name(Nsections)); phase_name = '' allocate(phase_elasticity(Nsections), source=ELASTICITY_undefined_ID) allocate(phase_elasticityInstance(Nsections), source=0_pInt) allocate(phase_plasticity(Nsections) , source=PLASTICITY_undefined_ID) allocate(phase_plasticityInstance(Nsections), source=0_pInt) allocate(phase_Nsources(Nsections), source=0_pInt) allocate(phase_Nkinematics(Nsections), source=0_pInt) allocate(phase_NstiffnessDegradations(Nsections),source=0_pInt) allocate(phase_Noutput(Nsections), source=0_pInt) allocate(phase_localPlasticity(Nsections), source=.false.) phase_Noutput = IO_countTagInPart(fileUnit,myPart,'(output)',Nsections) phase_Nsources = IO_countTagInPart(fileUnit,myPart,'(source)',Nsections) phase_Nkinematics = IO_countTagInPart(fileUnit,myPart,'(kinematics)',Nsections) phase_NstiffnessDegradations = IO_countTagInPart(fileUnit,myPart,'(stiffness_degradation)',Nsections) phase_localPlasticity = .not. IO_spotTagInPart(fileUnit,myPart,'/nonlocal/',Nsections) allocate(phase_source(maxval(phase_Nsources),Nsections), source=SOURCE_undefined_ID) allocate(phase_kinematics(maxval(phase_Nkinematics),Nsections), source=KINEMATICS_undefined_ID) allocate(phase_stiffnessDegradation(maxval(phase_NstiffnessDegradations),Nsections), & source=STIFFNESS_DEGRADATION_undefined_ID) rewind(fileUnit) line = '' ! to have it initialized section = 0_pInt ! - " - do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <Phase> line = IO_read(fileUnit) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= IO_EOF) ! read through sections of material part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt sourceCtr = 0_pInt kinematicsCtr = 0_pInt stiffDegradationCtr = 0_pInt phase_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('elasticity') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case (ELASTICITY_HOOKE_label) phase_elasticity(section) = ELASTICITY_HOOKE_ID case default call IO_error(200_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('plasticity') select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case (PLASTICITY_NONE_label) phase_plasticity(section) = PLASTICITY_NONE_ID case (PLASTICITY_ISOTROPIC_label) phase_plasticity(section) = PLASTICITY_ISOTROPIC_ID case (PLASTICITY_PHENOPOWERLAW_label) phase_plasticity(section) = PLASTICITY_PHENOPOWERLAW_ID case (PLASTICITY_PHENOPLUS_label) phase_plasticity(section) = PLASTICITY_PHENOPLUS_ID case (PLASTICITY_DISLOTWIN_label) phase_plasticity(section) = PLASTICITY_DISLOTWIN_ID case (PLASTICITY_DISLOUCLA_label) phase_plasticity(section) = PLASTICITY_DISLOUCLA_ID case (PLASTICITY_TITANMOD_label) phase_plasticity(section) = PLASTICITY_TITANMOD_ID case (PLASTICITY_NONLOCAL_label) phase_plasticity(section) = PLASTICITY_NONLOCAL_ID case default call IO_error(201_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt))) end select case ('(source)') sourceCtr = sourceCtr + 1_pInt select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case (SOURCE_thermal_dissipation_label) phase_source(sourceCtr,section) = SOURCE_thermal_dissipation_ID case (SOURCE_thermal_externalheat_label) phase_source(sourceCtr,section) = SOURCE_thermal_externalheat_ID case (SOURCE_damage_isoBrittle_label) phase_source(sourceCtr,section) = SOURCE_damage_isoBrittle_ID case (SOURCE_damage_isoDuctile_label) phase_source(sourceCtr,section) = SOURCE_damage_isoDuctile_ID case (SOURCE_damage_anisoBrittle_label) phase_source(sourceCtr,section) = SOURCE_damage_anisoBrittle_ID case (SOURCE_damage_anisoDuctile_label) phase_source(sourceCtr,section) = SOURCE_damage_anisoDuctile_ID case (SOURCE_vacancy_phenoplasticity_label) phase_source(sourceCtr,section) = SOURCE_vacancy_phenoplasticity_ID case (SOURCE_vacancy_irradiation_label) phase_source(sourceCtr,section) = SOURCE_vacancy_irradiation_ID case (SOURCE_vacancy_thermalfluc_label) phase_source(sourceCtr,section) = SOURCE_vacancy_thermalfluc_ID end select case ('(kinematics)') kinematicsCtr = kinematicsCtr + 1_pInt select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case (KINEMATICS_cleavage_opening_label) phase_kinematics(kinematicsCtr,section) = KINEMATICS_cleavage_opening_ID case (KINEMATICS_slipplane_opening_label) phase_kinematics(kinematicsCtr,section) = KINEMATICS_slipplane_opening_ID case (KINEMATICS_thermal_expansion_label) phase_kinematics(kinematicsCtr,section) = KINEMATICS_thermal_expansion_ID case (KINEMATICS_vacancy_strain_label) phase_kinematics(kinematicsCtr,section) = KINEMATICS_vacancy_strain_ID case (KINEMATICS_hydrogen_strain_label) phase_kinematics(kinematicsCtr,section) = KINEMATICS_hydrogen_strain_ID end select case ('(stiffness_degradation)') stiffDegradationCtr = stiffDegradationCtr + 1_pInt select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case (STIFFNESS_DEGRADATION_damage_label) phase_stiffnessDegradation(stiffDegradationCtr,section) = STIFFNESS_DEGRADATION_damage_ID case (STIFFNESS_DEGRADATION_porosity_label) phase_stiffnessDegradation(stiffDegradationCtr,section) = STIFFNESS_DEGRADATION_porosity_ID end select end select endif enddo do p=1_pInt, Nsections phase_elasticityInstance(p) = count(phase_elasticity(1:p) == phase_elasticity(p)) phase_plasticityInstance(p) = count(phase_plasticity(1:p) == phase_plasticity(p)) enddo end subroutine material_parsePhase !-------------------------------------------------------------------------------------------------- !> @brief parses the texture part in the material configuration file !-------------------------------------------------------------------------------------------------- subroutine material_parseTexture(fileUnit,myPart) use prec, only: & dNeq use IO, only: & IO_read, & IO_globalTagInPart, & IO_countSections, & IO_error, & IO_countTagInPart, & IO_getTag, & IO_spotTagInPart, & IO_lc, & IO_isBlank, & IO_floatValue, & IO_stringValue, & IO_stringPos, & IO_EOF use math, only: & inRad, & math_sampleRandomOri, & math_I3, & math_det33, & math_inv33 implicit none character(len=*), intent(in) :: myPart integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: Nsections, section, gauss, fiber, j character(len=65536) :: tag character(len=65536) :: line logical :: echo echo = IO_globalTagInPart(fileUnit,myPart,'/echo/') Nsections = IO_countSections(fileUnit,myPart) material_Ntexture = Nsections if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart) allocate(texture_name(Nsections)); texture_name='' allocate(texture_ODFfile(Nsections)); texture_ODFfile='' allocate(texture_symmetry(Nsections), source=1_pInt) allocate(texture_Ngauss(Nsections), source=0_pInt) allocate(texture_Nfiber(Nsections), source=0_pInt) texture_Ngauss = IO_countTagInPart(fileUnit,myPart,'(gauss)', Nsections) + & IO_countTagInPart(fileUnit,myPart,'(random)',Nsections) texture_Nfiber = IO_countTagInPart(fileUnit,myPart,'(fiber)', Nsections) texture_maxNgauss = maxval(texture_Ngauss) texture_maxNfiber = maxval(texture_Nfiber) allocate(texture_Gauss (5,texture_maxNgauss,Nsections), source=0.0_pReal) allocate(texture_Fiber (6,texture_maxNfiber,Nsections), source=0.0_pReal) allocate(texture_transformation(3,3,Nsections), source=0.0_pReal) texture_transformation = spread(math_I3,3,Nsections) rewind(fileUnit) line = '' ! to have in initialized section = 0_pInt ! - " - gauss = 0_pInt ! - " - fiber = 0_pInt ! - " - do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <texture> line = IO_read(fileUnit) enddo if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header do while (trim(line) /= IO_EOF) line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt gauss = 0_pInt fiber = 0_pInt texture_name(section) = IO_getTag(line,'[',']') endif if (section > 0_pInt) then chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key textureType: select case(tag) case ('axes', 'rotation') textureType do j = 1_pInt, 3_pInt ! look for "x", "y", and "z" entries tag = IO_lc(IO_stringValue(line,chunkPos,j+1_pInt)) select case (tag) case('x', '+x') texture_transformation(j,1:3,section) = [ 1.0_pReal, 0.0_pReal, 0.0_pReal] ! original axis is now +x-axis case('-x') texture_transformation(j,1:3,section) = [-1.0_pReal, 0.0_pReal, 0.0_pReal] ! original axis is now -x-axis case('y', '+y') texture_transformation(j,1:3,section) = [ 0.0_pReal, 1.0_pReal, 0.0_pReal] ! original axis is now +y-axis case('-y') texture_transformation(j,1:3,section) = [ 0.0_pReal,-1.0_pReal, 0.0_pReal] ! original axis is now -y-axis case('z', '+z') texture_transformation(j,1:3,section) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal] ! original axis is now +z-axis case('-z') texture_transformation(j,1:3,section) = [ 0.0_pReal, 0.0_pReal,-1.0_pReal] ! original axis is now -z-axis case default call IO_error(157_pInt,section) end select enddo if(dNeq(math_det33(texture_transformation(1:3,1:3,section)),1.0_pReal)) & call IO_error(157_pInt,section) case ('hybridia') textureType texture_ODFfile(section) = IO_stringValue(line,chunkPos,2_pInt) case ('symmetry') textureType tag = IO_lc(IO_stringValue(line,chunkPos,2_pInt)) select case (tag) case('orthotropic') texture_symmetry(section) = 4_pInt case('monoclinic') texture_symmetry(section) = 2_pInt case default texture_symmetry(section) = 1_pInt end select case ('(random)') textureType gauss = gauss + 1_pInt texture_Gauss(1:3,gauss,section) = math_sampleRandomOri() do j = 2_pInt,4_pInt,2_pInt tag = IO_lc(IO_stringValue(line,chunkPos,j)) select case (tag) case('scatter') texture_Gauss(4,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('fraction') texture_Gauss(5,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt) end select enddo case ('(gauss)') textureType gauss = gauss + 1_pInt do j = 2_pInt,10_pInt,2_pInt tag = IO_lc(IO_stringValue(line,chunkPos,j)) select case (tag) case('phi1') texture_Gauss(1,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('phi') texture_Gauss(2,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('phi2') texture_Gauss(3,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('scatter') texture_Gauss(4,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('fraction') texture_Gauss(5,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt) end select enddo case ('(fiber)') textureType fiber = fiber + 1_pInt do j = 2_pInt,12_pInt,2_pInt tag = IO_lc(IO_stringValue(line,chunkPos,j)) select case (tag) case('alpha1') texture_Fiber(1,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('alpha2') texture_Fiber(2,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('beta1') texture_Fiber(3,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('beta2') texture_Fiber(4,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('scatter') texture_Fiber(5,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad case('fraction') texture_Fiber(6,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt) end select enddo end select textureType endif enddo end subroutine material_parseTexture !-------------------------------------------------------------------------------------------------- !> @brief populates the grains !> @details populates the grains by identifying active microstructure/homogenization pairs, !! calculates the volume of the grains and deals with texture components and hybridIA !-------------------------------------------------------------------------------------------------- subroutine material_populateGrains use prec, only: & dEq use math, only: & math_RtoEuler, & math_EulerToR, & math_mul33x33, & math_range, & math_sampleRandomOri, & math_sampleGaussOri, & math_sampleFiberOri, & math_symmetricEulers use mesh, only: & mesh_element, & mesh_maxNips, & mesh_NcpElems, & mesh_ipVolume, & FE_Nips, & FE_geomtype use IO, only: & IO_error, & IO_hybridIA use debug, only: & debug_level, & debug_material, & debug_levelBasic implicit none integer(pInt), dimension (:,:), allocatable :: Ngrains integer(pInt), dimension (microstructure_maxNconstituents) :: & NgrainsOfConstituent, & currentGrainOfConstituent, & randomOrder real(pReal), dimension (microstructure_maxNconstituents) :: & rndArray real(pReal), dimension (:), allocatable :: volumeOfGrain real(pReal), dimension (:,:), allocatable :: orientationOfGrain real(pReal), dimension (3) :: orientation real(pReal), dimension (3,3) :: symOrientation integer(pInt), dimension (:), allocatable :: phaseOfGrain, textureOfGrain integer(pInt) :: t,e,i,g,j,m,c,r,homog,micro,sgn,hme, myDebug, & phaseID,textureID,dGrains,myNgrains,myNorientations,myNconstituents, & grain,constituentGrain,ipGrain,symExtension, ip real(pReal) :: deviation,extreme,rnd integer(pInt), dimension (:,:), allocatable :: Nelems ! counts number of elements in homog, micro array type(p_intvec), dimension (:,:), allocatable :: elemsOfHomogMicro ! lists element number in homog, micro array myDebug = debug_level(debug_material) allocate(material_volume(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0_pInt) allocate(material_homog(mesh_maxNips,mesh_NcpElems), source=0_pInt) allocate(material_texture(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0_pInt) allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0.0_pReal) allocate(Ngrains(material_Nhomogenization,material_Nmicrostructure), source=0_pInt) allocate(Nelems(material_Nhomogenization,material_Nmicrostructure), source=0_pInt) ! populating homogenization schemes in each !-------------------------------------------------------------------------------------------------- do e = 1_pInt, mesh_NcpElems material_homog(1_pInt:FE_Nips(FE_geomtype(mesh_element(2,e))),e) = mesh_element(3,e) enddo !-------------------------------------------------------------------------------------------------- ! precounting of elements for each homog/micro pair do e = 1_pInt, mesh_NcpElems homog = mesh_element(3,e) micro = mesh_element(4,e) Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt enddo allocate(elemsOfHomogMicro(material_Nhomogenization,material_Nmicrostructure)) do homog = 1,material_Nhomogenization do micro = 1,material_Nmicrostructure if (Nelems(homog,micro) > 0_pInt) then allocate(elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro))) elemsOfHomogMicro(homog,micro)%p = 0_pInt endif enddo enddo !-------------------------------------------------------------------------------------------------- ! identify maximum grain count per IP (from element) and find grains per homog/micro pair Nelems = 0_pInt ! reuse as counter elementLooping: do e = 1_pInt,mesh_NcpElems t = FE_geomtype(mesh_element(2,e)) homog = mesh_element(3,e) micro = mesh_element(4,e) if (homog < 1_pInt .or. homog > material_Nhomogenization) & ! out of bounds call IO_error(154_pInt,e,0_pInt,0_pInt) if (micro < 1_pInt .or. micro > material_Nmicrostructure) & ! out of bounds call IO_error(155_pInt,e,0_pInt,0_pInt) if (microstructure_elemhomo(micro)) then ! how many grains are needed at this element? dGrains = homogenization_Ngrains(homog) ! only one set of Ngrains (other IPs are plain copies) else dGrains = homogenization_Ngrains(homog) * FE_Nips(t) ! each IP has Ngrains endif Ngrains(homog,micro) = Ngrains(homog,micro) + dGrains ! total grain count Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt ! total element count elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro)) = e ! remember elements active in this homog/micro pair enddo elementLooping allocate(volumeOfGrain(maxval(Ngrains)), source=0.0_pReal) ! reserve memory for maximum case allocate(phaseOfGrain(maxval(Ngrains)), source=0_pInt) ! reserve memory for maximum case allocate(textureOfGrain(maxval(Ngrains)), source=0_pInt) ! reserve memory for maximum case allocate(orientationOfGrain(3,maxval(Ngrains)),source=0.0_pReal) ! reserve memory for maximum case if (iand(myDebug,debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(/,a/)') ' MATERIAL grain population' write(6,'(a32,1x,a32,1x,a6)') 'homogenization_name','microstructure_name','grain#' !$OMP END CRITICAL (write2out) endif homogenizationLoop: do homog = 1_pInt,material_Nhomogenization dGrains = homogenization_Ngrains(homog) ! grain number per material point microstructureLoop: do micro = 1_pInt,material_Nmicrostructure ! all pairs of homog and micro activePair: if (Ngrains(homog,micro) > 0_pInt) then myNgrains = Ngrains(homog,micro) ! assign short name for total number of grains to populate myNconstituents = microstructure_Nconstituents(micro) ! assign short name for number of constituents if (iand(myDebug,debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(/,a32,1x,a32,1x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains !$OMP END CRITICAL (write2out) endif !-------------------------------------------------------------------------------------------------- ! calculate volume of each grain volumeOfGrain = 0.0_pReal grain = 0_pInt do hme = 1_pInt, Nelems(homog,micro) e = elemsOfHomogMicro(homog,micro)%p(hme) ! my combination of homog and micro, only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex t = FE_geomtype(mesh_element(2,e)) if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs volumeOfGrain(grain+1_pInt:grain+dGrains) = sum(mesh_ipVolume(1:FE_Nips(t),e))/& real(dGrains,pReal) ! each grain combines size of all IPs in that element grain = grain + dGrains ! wind forward by Ngrains@IP else forall (i = 1_pInt:FE_Nips(t)) & ! loop over IPs volumeOfGrain(grain+(i-1)*dGrains+1_pInt:grain+i*dGrains) = & mesh_ipVolume(i,e)/real(dGrains,pReal) ! assign IPvolume/Ngrains@IP to all grains of IP grain = grain + FE_Nips(t) * dGrains ! wind forward by Nips*Ngrains@IP endif enddo if (grain /= myNgrains) & call IO_error(0,el = homog,ip = micro,ext_msg = 'inconsistent grain count after volume calc') !-------------------------------------------------------------------------------------------------- ! divide myNgrains as best over constituents ! ! example: three constituents with fractions of 0.25, 0.25, and 0.5 distributed over 20 (microstructure) grains ! ! ***** ***** ********** ! NgrainsOfConstituent: 5, 5, 10 ! counters: ! |-----> grain (if constituent == 2) ! |--> constituentGrain (of constituent 2) ! NgrainsOfConstituent = 0_pInt ! reset counter of grains per constituent forall (i = 1_pInt:myNconstituents) & NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro)*real(myNgrains,pReal),pInt)! do rounding integer conversion do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong? sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change extreme = 0.0_pReal t = 0_pInt do i = 1_pInt,myNconstituents ! find largest deviator deviation = real(sgn,pReal)*log( microstructure_fraction(i,micro) / & !-------------------------------- & (real(NgrainsOfConstituent(i),pReal)/real(myNgrains,pReal) ) ) if (deviation > extreme) then extreme = deviation t = i endif enddo NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one enddo !-------------------------------------------------------------------------------------------------- ! assign phase and texture info phaseOfGrain = 0_pInt textureOfGrain = 0_pInt orientationOfGrain = 0.0_pReal texture: do i = 1_pInt,myNconstituents ! loop over constituents grain = sum(NgrainsOfConstituent(1_pInt:i-1_pInt)) ! set microstructure grain index of current constituent ! "grain" points to start of this constituent's grain population constituentGrain = 0_pInt ! constituent grain index phaseID = microstructure_phase(i,micro) textureID = microstructure_texture(i,micro) phaseOfGrain (grain+1_pInt:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase textureOfGrain(grain+1_pInt:grain+NgrainsOfConstituent(i)) = textureID ! assign resp. texture myNorientations = ceiling(real(NgrainsOfConstituent(i),pReal)/& real(texture_symmetry(textureID),pReal),pInt) ! max number of unique orientations (excl. symmetry) !-------------------------------------------------------------------------------------------------- ! ...has texture components if (texture_ODFfile(textureID) == '') then gauss: do t = 1_pInt,texture_Ngauss(textureID) ! loop over Gauss components do g = 1_pInt,int(real(myNorientations,pReal)*texture_Gauss(5,t,textureID),pInt) ! loop over required grain count orientationOfGrain(:,grain+constituentGrain+g) = & math_sampleGaussOri(texture_Gauss(1:3,t,textureID),& texture_Gauss( 4,t,textureID)) enddo constituentGrain = & constituentGrain + int(real(myNorientations,pReal)*texture_Gauss(5,t,textureID)) ! advance counter for grains of current constituent enddo gauss fiber: do t = 1_pInt,texture_Nfiber(textureID) ! loop over fiber components do g = 1_pInt,int(real(myNorientations,pReal)*texture_Fiber(6,t,textureID),pInt) ! loop over required grain count orientationOfGrain(:,grain+constituentGrain+g) = & math_sampleFiberOri(texture_Fiber(1:2,t,textureID),& texture_Fiber(3:4,t,textureID),& texture_Fiber( 5,t,textureID)) enddo constituentGrain = & constituentGrain + int(real(myNorientations,pReal)*texture_fiber(6,t,textureID),pInt) ! advance counter for grains of current constituent enddo fiber random: do constituentGrain = constituentGrain+1_pInt,myNorientations ! fill remainder with random orientationOfGrain(:,grain+constituentGrain) = math_sampleRandomOri() enddo random !-------------------------------------------------------------------------------------------------- ! ...has hybrid IA else orientationOfGrain(1:3,grain+1_pInt:grain+myNorientations) = & IO_hybridIA(myNorientations,texture_ODFfile(textureID)) if (all(dEq(orientationOfGrain(1:3,grain+1_pInt),-1.0_pReal))) call IO_error(156_pInt) endif !-------------------------------------------------------------------------------------------------- ! ...texture transformation do j = 1_pInt,myNorientations ! loop over each "real" orientation orientationOfGrain(1:3,grain+j) = math_RtoEuler( & ! translate back to Euler angles math_mul33x33( & ! pre-multiply math_EulertoR(orientationOfGrain(1:3,grain+j)), & ! face-value orientation texture_transformation(1:3,1:3,textureID) & ! and transformation matrix ) & ) enddo !-------------------------------------------------------------------------------------------------- ! ...sample symmetry symExtension = texture_symmetry(textureID) - 1_pInt if (symExtension > 0_pInt) then ! sample symmetry (number of additional equivalent orientations) constituentGrain = myNorientations ! start right after "real" orientations do j = 1_pInt,myNorientations ! loop over each "real" orientation symOrientation = math_symmetricEulers(texture_symmetry(textureID), & orientationOfGrain(1:3,grain+j)) ! get symmetric equivalents e = min(symExtension,NgrainsOfConstituent(i)-constituentGrain) ! do not overshoot end of constituent grain array if (e > 0_pInt) then orientationOfGrain(1:3,grain+constituentGrain+1: & grain+constituentGrain+e) = & symOrientation(1:3,1:e) constituentGrain = constituentGrain + e ! remainder shrinks by e endif enddo endif !-------------------------------------------------------------------------------------------------- ! shuffle grains within current constituent do j = 1_pInt,NgrainsOfConstituent(i)-1_pInt ! walk thru grains of current constituent call random_number(rnd) t = nint(rnd*real(NgrainsOfConstituent(i)-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! select a grain in remaining list m = phaseOfGrain(grain+t) ! exchange current with random phaseOfGrain(grain+t) = phaseOfGrain(grain+j) phaseOfGrain(grain+j) = m m = textureOfGrain(grain+t) ! exchange current with random textureOfGrain(grain+t) = textureOfGrain(grain+j) textureOfGrain(grain+j) = m orientation = orientationOfGrain(1:3,grain+t) ! exchange current with random orientationOfGrain(1:3,grain+t) = orientationOfGrain(1:3,grain+j) orientationOfGrain(1:3,grain+j) = orientation enddo enddo texture !< @todo calc fraction after weighing with volumePerGrain, exchange in MC steps to improve result (humbug at the moment) !-------------------------------------------------------------------------------------------------- ! distribute grains of all constituents as accurately as possible to given constituent fractions ip = 0_pInt currentGrainOfConstituent = 0_pInt do hme = 1_pInt, Nelems(homog,micro) e = elemsOfHomogMicro(homog,micro)%p(hme) ! only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex t = FE_geomtype(mesh_element(2,e)) if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs m = 1_pInt ! process only first IP else m = FE_Nips(t) ! process all IPs endif do i = 1_pInt, m ! loop over necessary IPs ip = ip + 1_pInt ! keep track of total ip count ipGrain = 0_pInt ! count number of grains assigned at this IP randomOrder = math_range(microstructure_maxNconstituents) ! start out with ordered sequence of constituents call random_number(rndArray) ! as many rnd numbers as (max) constituents do j = 1_pInt, myNconstituents - 1_pInt ! loop over constituents ... r = nint(rndArray(j)*real(myNconstituents-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! ... select one in remaining list c = randomOrder(r) ! ... call it "c" randomOrder(r) = randomOrder(j) ! ... and exchange with present position in constituent list grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population do g = 1_pInt, min(dGrains-ipGrain, & ! leftover number of grains at this IP max(0_pInt, & ! no negative values nint(real(ip * dGrains * NgrainsOfConstituent(c)) / & ! fraction of grains scaled to this constituent... real(myNgrains),pInt) - & ! ...minus those already distributed currentGrainOfConstituent(c))) ipGrain = ipGrain + 1_pInt ! advance IP grain counter currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt ! advance index of grain population for constituent c material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c)) ! assign properties material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c)) material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c)) material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c)) enddo; enddo c = randomOrder(microstructure_Nconstituents(micro)) ! look up constituent remaining after random shuffling grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population do ipGrain = ipGrain + 1_pInt, dGrains ! ensure last constituent fills up to dGrains currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c)) material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c)) material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c)) material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c)) enddo enddo do i = i, FE_Nips(t) ! loop over IPs to (possibly) distribute copies from first IP material_volume (1_pInt:dGrains,i,e) = material_volume (1_pInt:dGrains,1,e) material_phase (1_pInt:dGrains,i,e) = material_phase (1_pInt:dGrains,1,e) material_texture(1_pInt:dGrains,i,e) = material_texture(1_pInt:dGrains,1,e) material_EulerAngles(1:3,1_pInt:dGrains,i,e) = material_EulerAngles(1:3,1_pInt:dGrains,1,e) enddo enddo endif activePair enddo microstructureLoop enddo homogenizationLoop deallocate(volumeOfGrain) deallocate(phaseOfGrain) deallocate(textureOfGrain) deallocate(orientationOfGrain) deallocate(texture_transformation) deallocate(Nelems) deallocate(elemsOfHomogMicro) end subroutine material_populateGrains end module material