! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for phenomenological crystal plasticity formulation using a powerlaw !! fitting !-------------------------------------------------------------------------------------------------- module constitutive_phenopowerlaw use prec, only: & pReal,& pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & constitutive_phenopowerlaw_sizeDotState, & constitutive_phenopowerlaw_sizeState, & constitutive_phenopowerlaw_sizePostResults, & !< cumulative size of post results constitutive_phenopowerlaw_structure integer(pInt), dimension(:,:), allocatable, target, public :: & constitutive_phenopowerlaw_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & constitutive_phenopowerlaw_output !< name of each post result output integer(pInt), dimension(:), allocatable, private :: & constitutive_phenopowerlaw_Noutput, & !< number of outputs per instance of this constitution constitutive_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation constitutive_phenopowerlaw_totalNtwin !< no. of twin system used in simulation integer(pInt), dimension(:,:), allocatable, private :: & constitutive_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family) constitutive_phenopowerlaw_Ntwin !< active number of twin systems per family (input parameter, per family) real(pReal), dimension(:), allocatable, private :: & constitutive_phenopowerlaw_CoverA, & !< c/a of the crystal (input parameter) constitutive_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter) constitutive_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter) constitutive_phenopowerlaw_n_slip, & !< stress exponent for slip (input parameter) constitutive_phenopowerlaw_n_twin, & !< stress exponent for twin (input parameter) constitutive_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning constitutive_phenopowerlaw_twinB, & constitutive_phenopowerlaw_twinC, & constitutive_phenopowerlaw_twinD, & constitutive_phenopowerlaw_twinE, & constitutive_phenopowerlaw_h0_SlipSlip, & !< reference hardening slip - slip (input parameter) constitutive_phenopowerlaw_h0_SlipTwin, & !< reference hardening slip - twin (input parameter, no effect at the moment) constitutive_phenopowerlaw_h0_TwinSlip, & !< reference hardening twin - slip (input parameter) constitutive_phenopowerlaw_h0_TwinTwin, & !< reference hardening twin - twin (input parameter) constitutive_phenopowerlaw_a_slip, & constitutive_phenopowerlaw_aTolResistance, & constitutive_phenopowerlaw_aTolShear, & constitutive_phenopowerlaw_aTolTwinfrac real(pReal), dimension(:,:), allocatable, private :: & constitutive_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family) constitutive_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family) constitutive_phenopowerlaw_tausat_slip, & !< maximum critical shear stress for slip (input parameter, per family) constitutive_phenopowerlaw_nonSchmidCoeff, & constitutive_phenopowerlaw_interaction_SlipSlip, & !< interaction factors slip - slip (input parameter) constitutive_phenopowerlaw_interaction_SlipTwin, & !< interaction factors slip - twin (input parameter) constitutive_phenopowerlaw_interaction_TwinSlip, & !< interaction factors twin - slip (input parameter) constitutive_phenopowerlaw_interaction_TwinTwin !< interaction factors twin - twin (input parameter) real(pReal), dimension(:,:,:), allocatable, private :: & constitutive_phenopowerlaw_hardeningMatrix_SlipSlip, & constitutive_phenopowerlaw_hardeningMatrix_SlipTwin, & constitutive_phenopowerlaw_hardeningMatrix_TwinSlip, & constitutive_phenopowerlaw_hardeningMatrix_TwinTwin, & constitutive_phenopowerlaw_Cslip_66 enum, bind(c) enumerator :: undefined_ID, & resistance_slip_ID, & accumulatedshear_slip_ID, & shearrate_slip_ID, & resolvedstress_slip_ID, & totalshear_ID, & resistance_twin_ID, & accumulatedshear_twin_ID, & shearrate_twin_ID, & resolvedstress_twin_ID, & totalvolfrac_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & constitutive_phenopowerlaw_outputID !< ID of each post result output public :: & constitutive_phenopowerlaw_init, & constitutive_phenopowerlaw_stateInit, & constitutive_phenopowerlaw_aTolState, & constitutive_phenopowerlaw_homogenizedC, & constitutive_phenopowerlaw_LpAndItsTangent, & constitutive_phenopowerlaw_dotState, & constitutive_phenopowerlaw_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine constitutive_phenopowerlaw_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use prec, only: & tol_math_check use debug, only: & debug_level, & debug_constitutive,& debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333 use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & homogenization_maxNgrains, & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_PHENOPOWERLAW_label, & PLASTICITY_PHENOPOWERLAW_ID, & MATERIAL_partPhase use lattice implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: MAXNCHUNKS = LATTICE_maxNinteraction + 1_pInt integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions integer(pInt), dimension(7) :: configNchunks integer(pInt) :: & maxNinstance, & i,j,k, f,o, & Nchunks_SlipSlip, Nchunks_SlipTwin, Nchunks_TwinSlip, Nchunks_TwinTwin, & Nchunks_SlipFamilies, Nchunks_TwinFamilies, Nchunks_nonSchmid, & structID, index_myFamily, index_otherFamily, & mySize=0_pInt, section = 0_pInt character(len=32) :: & structure = '' character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_PHENOPOWERLAW_label//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance Nchunks_SlipFamilies = lattice_maxNslipFamily Nchunks_TwinFamilies = lattice_maxNtwinFamily Nchunks_SlipSlip = lattice_maxNinteraction Nchunks_SlipTwin = lattice_maxNinteraction Nchunks_TwinSlip = lattice_maxNinteraction Nchunks_TwinTwin = lattice_maxNinteraction Nchunks_nonSchmid = lattice_maxNnonSchmid allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_sizeState(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput),maxNinstance), & source=0_pInt) allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput),maxNinstance)) constitutive_phenopowerlaw_output = '' allocate(constitutive_phenopowerlaw_outputID(maxval(phase_Noutput),maxNinstance),source=undefined_ID) allocate(constitutive_phenopowerlaw_Noutput(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_structure(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance), source=0_pInt) allocate(constitutive_phenopowerlaw_CoverA(maxNinstance) , source=0.0_pReal) allocate(constitutive_phenopowerlaw_Cslip_66(6,6,maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_n_slip(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_n_twin(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_spr(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_twinB(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_twinC(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_twinD(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_twinE(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_h0_SlipSlip(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_h0_SlipTwin(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_h0_TwinSlip(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_h0_TwinTwin(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_phenopowerlaw_a_slip(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_aTolShear(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_aTolTwinfrac(maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), & source=0.0_pReal) rewind(fileUnit) do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to line = IO_read(fileUnit) enddo do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt ! advance section counter if (phase_plasticity(section) == PLASTICITY_PHENOPOWERLAW_ID) then i = phase_plasticityInstance(section) constitutive_phenopowerlaw_Cslip_66(1:6,1:6,i) = lattice_Cslip_66(1:6,1:6,section) constitutive_phenopowerlaw_structure(i) = lattice_structure(section) configNchunks = lattice_configNchunks(lattice_structureID(section)) Nchunks_SlipFamilies = configNchunks(1) Nchunks_TwinFamilies = configNchunks(2) Nchunks_SlipSlip = configNchunks(3) Nchunks_SlipTwin = configNchunks(4) Nchunks_TwinSlip = configNchunks(5) Nchunks_TwinTwin = configNchunks(6) Nchunks_nonSchmid = configNchunks(7) endif cycle ! skip to next line endif if (section > 0_pInt ) then; if (phase_plasticity(section) == PLASTICITY_PHENOPOWERLAW_ID) then ! one of my sections. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('plasticity','elasticity','lattice_structure',& 'c11','c12','c13','c22','c23','c33','c44','c55','c66') case ('(output)') constitutive_phenopowerlaw_Noutput(i) = constitutive_phenopowerlaw_Noutput(i) + 1_pInt constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = & IO_lc(IO_stringValue(line,positions,2_pInt)) select case(IO_lc(IO_stringValue(line,positions,2_pInt))) case ('resistance_slip') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = resistance_slip_ID case ('accumulatedshear_slip') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = accumulatedshear_slip_ID case ('shearrate_slip') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = shearrate_slip_ID case ('resolvedstress_slip') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = resolvedstress_slip_ID case ('totalshear') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = totalshear_ID case ('resistance_twin') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = resistance_twin_ID case ('accumulatedshear_twin') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = accumulatedshear_twin_ID case ('shearrate_twin') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = shearrate_twin_ID case ('resolvedstress_twin') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = resolvedstress_twin_ID case ('totalvolfrac') constitutive_phenopowerlaw_outputID(constitutive_phenopowerlaw_Noutput(i),i) = totalvolfrac_ID case default call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') end select case ('nslip') if (positions(1) < 1_pInt + Nchunks_SlipFamilies) & call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') Nchunks_SlipFamilies = positions(1) - 1_pInt do j = 1_pInt, Nchunks_SlipFamilies constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j) enddo case ('gdot0_slip') constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt) case ('n_slip') constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt) case ('tau0_slip') do j = 1_pInt,Nchunks_SlipFamilies constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('tausat_slip') do j = 1_pInt, Nchunks_SlipFamilies constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('a_slip', 'w0_slip') constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt) case ('ntwin') if (positions(1) < 1_pInt + Nchunks_TwinFamilies) & call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') Nchunks_TwinFamilies = positions(1) - 1_pInt do j = 1_pInt, Nchunks_TwinFamilies constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j) enddo case ('gdot0_twin') constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt) case ('n_twin') constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt) case ('tau0_twin') do j = 1_pInt, Nchunks_TwinFamilies constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('s_pr') constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt) case ('twin_b') constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt) case ('twin_c') constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt) case ('twin_d') constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt) case ('twin_e') constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt) case ('h0_slipslip') constitutive_phenopowerlaw_h0_SlipSlip(i) = IO_floatValue(line,positions,2_pInt) case ('h0_sliptwin') constitutive_phenopowerlaw_h0_SlipTwin(i) = IO_floatValue(line,positions,2_pInt) call IO_warning(42_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') case ('h0_twinslip') constitutive_phenopowerlaw_h0_TwinSlip(i) = IO_floatValue(line,positions,2_pInt) case ('h0_twintwin') constitutive_phenopowerlaw_h0_TwinTwin(i) = IO_floatValue(line,positions,2_pInt) case ('atol_resistance') constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt) case ('atol_shear') constitutive_phenopowerlaw_aTolShear(i) = IO_floatValue(line,positions,2_pInt) case ('atol_twinfrac') constitutive_phenopowerlaw_aTolTwinfrac(i) = IO_floatValue(line,positions,2_pInt) case ('interaction_slipslip') if (positions(1) < 1_pInt + Nchunks_SlipSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_SlipSlip constitutive_phenopowerlaw_interaction_SlipSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_sliptwin') if (positions(1) < 1_pInt + Nchunks_SlipTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_SlipTwin constitutive_phenopowerlaw_interaction_SlipTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_twinslip') if (positions(1) < 1_pInt + Nchunks_TwinSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_TwinSlip constitutive_phenopowerlaw_interaction_TwinSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_twintwin') if (positions(1) < 1_pInt + Nchunks_TwinTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt, Nchunks_TwinTwin constitutive_phenopowerlaw_interaction_TwinTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('nonschmid_coefficients') if (positions(1) < 1_pInt + Nchunks_nonSchmid) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') do j = 1_pInt,Nchunks_nonSchmid constitutive_phenopowerlaw_nonSchmidCoeff(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case default call IO_error(210_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_PHENOPOWERLAW_label//')') end select endif; endif enddo sanityChecks: do i = 1_pInt,maxNinstance constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = & min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i)) constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = & min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested constitutive_phenopowerlaw_Ntwin(:,i)) constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,el=i,ext_msg='tau0_slip (' & //PLASTICITY_PHENOPOWERLAW_label//')') if (constitutive_phenopowerlaw_gdot0_slip(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='gdot0_slip (' & //PLASTICITY_PHENOPOWERLAW_label//')') if (constitutive_phenopowerlaw_n_slip(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='n_slip (' & //PLASTICITY_PHENOPOWERLAW_label//')') if (any(constitutive_phenopowerlaw_tausat_slip(:,i) <= 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,el=i,ext_msg='tausat_slip (' & //PLASTICITY_PHENOPOWERLAW_label//')') if (any(constitutive_phenopowerlaw_a_slip(i) == 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,el=i,ext_msg='a_slip (' & //PLASTICITY_PHENOPOWERLAW_label//')') if (any(constitutive_phenopowerlaw_tau0_twin(:,i) < 0.0_pReal .and. & constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,el=i,ext_msg='tau0_twin (' & //PLASTICITY_PHENOPOWERLAW_label//')') if ( constitutive_phenopowerlaw_gdot0_twin(i) <= 0.0_pReal .and. & any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,el=i,ext_msg='gdot0_twin (' & //PLASTICITY_PHENOPOWERLAW_label//')') if ( constitutive_phenopowerlaw_n_twin(i) <= 0.0_pReal .and. & any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,el=i,ext_msg='n_twin (' & //PLASTICITY_PHENOPOWERLAW_label//')') if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa if (constitutive_phenopowerlaw_aTolShear(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolShear(i) = 1.0e-6_pReal ! default absolute tolerance 1e-6 if (constitutive_phenopowerlaw_aTolTwinfrac(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolTwinfrac(i) = 1.0e-6_pReal ! default absolute tolerance 1e-6 enddo sanityChecks !-------------------------------------------------------------------------------------------------- ! allocation of variables whose size depends on the total number of active slip systems allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity maxval(constitutive_phenopowerlaw_totalNslip),& maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from twin activity maxval(constitutive_phenopowerlaw_totalNtwin),& maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from slip activity maxval(constitutive_phenopowerlaw_totalNslip),& maxNinstance), source=0.0_pReal) allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity maxval(constitutive_phenopowerlaw_totalNtwin),& maxNinstance), source=0.0_pReal) instancesLoop: do i = 1_pInt,maxNinstance outputsLoop: do o = 1_pInt,constitutive_phenopowerlaw_Noutput(i) select case(constitutive_phenopowerlaw_outputID(o,i)) case(resistance_slip_ID, & shearrate_slip_ID, & accumulatedshear_slip_ID, & resolvedstress_slip_ID & ) mySize = constitutive_phenopowerlaw_totalNslip(i) case(resistance_twin_ID, & shearrate_twin_ID, & accumulatedshear_twin_ID, & resolvedstress_twin_ID & ) mySize = constitutive_phenopowerlaw_totalNtwin(i) case(totalshear_ID, & totalvolfrac_ID & ) mySize = 1_pInt case default end select outputFound: if (mySize > 0_pInt) then constitutive_phenopowerlaw_sizePostResult(o,i) = mySize constitutive_phenopowerlaw_sizePostResults(i) = constitutive_phenopowerlaw_sizePostResults(i) + mySize endif outputFound enddo outputsLoop constitutive_phenopowerlaw_sizeDotState(i) = constitutive_phenopowerlaw_totalNslip(i)+ & constitutive_phenopowerlaw_totalNtwin(i)+ & 2_pInt + & constitutive_phenopowerlaw_totalNslip(i)+ & constitutive_phenopowerlaw_totalNtwin(i) ! s_slip, s_twin, sum(gamma), sum(f), accshear_slip, accshear_twin constitutive_phenopowerlaw_sizeState(i) = constitutive_phenopowerlaw_sizeDotState(i) structID = constitutive_phenopowerlaw_structure(i) do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1_pInt,i)) do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip) do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,structID))+j, & sum(lattice_NslipSystem(1:o-1,structID))+k, & structID), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,structID))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,structID))+k, & structID), i ) enddo; enddo enddo; enddo do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1_pInt,i)) do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin) do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,structID))+j, & sum(lattice_NslipSystem(1:o-1_pInt,structID))+k, & structID), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,structID))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,structID))+k, & structID), i ) enddo; enddo enddo; enddo enddo instancesLoop end subroutine constitutive_phenopowerlaw_init !-------------------------------------------------------------------------------------------------- !> @brief sets the initial microstructural state for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_stateInit(matID) use lattice, only: & lattice_maxNslipFamily, & lattice_maxNtwinFamily implicit none integer(pInt), intent(in) :: & matID !< number specifying the instance of the plasticity real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(matID)) :: & constitutive_phenopowerlaw_stateInit integer(pInt) :: & i constitutive_phenopowerlaw_stateInit = 0.0_pReal do i = 1_pInt,lattice_maxNslipFamily constitutive_phenopowerlaw_stateInit(1+& sum(constitutive_phenopowerlaw_Nslip(1:i-1,matID)) : & sum(constitutive_phenopowerlaw_Nslip(1:i ,matID))) = & constitutive_phenopowerlaw_tau0_slip(i,matID) enddo do i = 1_pInt,lattice_maxNtwinFamily constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,matID))+& sum(constitutive_phenopowerlaw_Ntwin(1:i-1,matID)) : & sum(constitutive_phenopowerlaw_Nslip(:,matID))+& sum(constitutive_phenopowerlaw_Ntwin(1:i ,matID))) = & constitutive_phenopowerlaw_tau0_twin(i,matID) enddo end function constitutive_phenopowerlaw_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_aTolState(matID) implicit none integer(pInt), intent(in) :: matID !< number specifying the instance of the plasticity real(pReal), dimension(constitutive_phenopowerlaw_sizeState(matID)) :: & constitutive_phenopowerlaw_aTolState constitutive_phenopowerlaw_aTolState(1:constitutive_phenopowerlaw_totalNslip(matID)+ & constitutive_phenopowerlaw_totalNtwin(matID)) = & constitutive_phenopowerlaw_aTolResistance(matID) constitutive_phenopowerlaw_aTolState(1+constitutive_phenopowerlaw_totalNslip(matID)+ & constitutive_phenopowerlaw_totalNtwin(matID)) = & constitutive_phenopowerlaw_aTolShear(matID) constitutive_phenopowerlaw_aTolState(2+constitutive_phenopowerlaw_totalNslip(matID)+ & constitutive_phenopowerlaw_totalNtwin(matID)) = & constitutive_phenopowerlaw_aTolTwinFrac(matID) constitutive_phenopowerlaw_aTolState(3+constitutive_phenopowerlaw_totalNslip(matID)+ & constitutive_phenopowerlaw_totalNtwin(matID): & 2+2*(constitutive_phenopowerlaw_totalNslip(matID)+ & constitutive_phenopowerlaw_totalNtwin(matID))) = & constitutive_phenopowerlaw_aTolShear(matID) end function constitutive_phenopowerlaw_aTolState !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_homogenizedC(ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6,6) :: & constitutive_phenopowerlaw_homogenizedC integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(1:6,1:6,& phase_plasticityInstance(material_phase(ipc,ip,el))) end function constitutive_phenopowerlaw_homogenizedC !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- pure subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,state,ipc,ip,el) use prec, only: & p_vec use math, only: & math_Plain3333to99, & math_Mandel6to33 use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_Stwin, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(9,9), intent(out) :: & dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state integer(pInt) :: & matID, & nSlip, & nTwin,structID,index_Gamma,index_F,index_myFamily, & f,i,j,k,l,m,n real(pReal), dimension(3,3,3,3) :: & dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor real(pReal), dimension(3,3,2) :: & nonSchmid_tensor real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg,tau_slip_pos,tau_slip_neg real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,dgdot_dtautwin,tau_twin matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar99 = 0.0_pReal j = 0_pInt slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt !-------------------------------------------------------------------------------------------------- ! Calculation of Lp tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_pos(j) nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,structID) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1) do k = 1,lattice_NnonSchmid(structID) tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)*& lattice_Sslip(1:3,1:3,2*k,index_myFamily+i,structID) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)*& lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,structID) enddo gdot_slip_pos(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(matID)* & ((abs(tau_slip_pos(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))*& sign(1.0_pReal,tau_slip_pos(j)) gdot_slip_neg(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(matID)* & ((abs(tau_slip_neg(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))*& sign(1.0_pReal,tau_slip_neg(j)) Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F (gdot_slip_pos(j)+gdot_slip_neg(j))*lattice_Sslip(1:3,1:3,1,index_myFamily+i,structID) !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Lp if (gdot_slip_pos(j) /= 0.0_pReal) then dgdot_dtauslip_pos(j) = gdot_slip_pos(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip_pos(j) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_pos(j)*lattice_Sslip(k,l,1,index_myFamily+i,structID)* & nonSchmid_tensor(m,n,1) endif if (gdot_slip_neg(j) /= 0.0_pReal) then dgdot_dtauslip_neg(j) = gdot_slip_neg(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip_neg(j) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_neg(j)*lattice_Sslip(k,l,1,index_myFamily+i,structID)* & nonSchmid_tensor(m,n,2) endif enddo enddo slipFamiliesLoop j = 0_pInt twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt !-------------------------------------------------------------------------------------------------- ! Calculation of Lp tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j))) Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID) !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Lp if (gdot_twin(j) /= 0.0_pReal) then dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,structID)* & lattice_Stwin(m,n,index_myFamily+i,structID) endif enddo enddo twinFamiliesLoop dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333) end subroutine constitutive_phenopowerlaw_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- function constitutive_phenopowerlaw_dotState(Tstar_v,state,ipc,ip,el) use prec, only: & p_vec use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_shearTwin, & lattice_NnonSchmid use mesh, only: & mesh_NcpElems,& mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_dotState integer(pInt) :: & matID,structID, & nSlip,nTwin, & f,i,j,k, & index_Gamma,index_F,index_myFamily, & offset_accshear_slip,offset_accshear_twin real(pReal) :: & c_SlipSlip,c_SlipTwin,c_TwinSlip,c_TwinTwin, & ssat_offset real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,tau_slip_pos,tau_slip_neg,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,tau_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt offset_accshear_slip = nSlip + nTwin + 2_pInt offset_accshear_twin = nSlip + nTwin + 2_pInt + nSlip constitutive_phenopowerlaw_dotState = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices c_SlipSlip = constitutive_phenopowerlaw_h0_SlipSlip(matID)*& (1.0_pReal + constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**& constitutive_phenopowerlaw_twinB(matID)) c_SlipTwin = 0.0_pReal c_TwinSlip = constitutive_phenopowerlaw_h0_TwinSlip(matID)*& state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID) c_TwinTwin = constitutive_phenopowerlaw_h0_TwinTwin(matID)*& state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID) !-------------------------------------------------------------------------------------------------- ! calculate left and right vectors and calculate dot gammas ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F)) j = 0_pInt slipFamiliesLoop1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt left_SlipSlip(j) = 1.0_pReal ! no system-dependent left part left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part right_SlipSlip(j) = abs(1.0_pReal-state(ipc,ip,el)%p(j) / & (constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset)) & **constitutive_phenopowerlaw_a_slip(matID)& *sign(1.0_pReal,1.0_pReal-state(ipc,ip,el)%p(j) / & (constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset)) right_TwinSlip(j) = 1.0_pReal ! no system-dependent part !-------------------------------------------------------------------------------------------------- ! Calculation of dot gamma tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_pos(j) do k = 1,lattice_NnonSchmid(structID) tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) enddo gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*0.5_pReal* & ((abs(tau_slip_pos(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID) & +(abs(tau_slip_neg(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))& *sign(1.0_pReal,tau_slip_pos(j)) enddo enddo slipFamiliesLoop1 j = 0_pInt twinFamiliesLoop1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt left_TwinSlip(j) = 1.0_pReal ! no system-dependent right part left_TwinTwin(j) = 1.0_pReal ! no system-dependent right part right_SlipTwin(j) = 1.0_pReal ! no system-dependent right part right_TwinTwin(j) = 1.0_pReal ! no system-dependent right part !-------------------------------------------------------------------------------------------------- ! Calculation of dot vol frac tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j))) enddo enddo twinFamiliesLoop1 !-------------------------------------------------------------------------------------------------- ! calculate the overall hardening based on above j = 0_pInt slipFamiliesLoop2: do f = 1_pInt,lattice_maxNslipFamily do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j c_SlipSlip * left_SlipSlip(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(j,1:nSlip,matID), & right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor c_SlipTwin * left_SlipTwin(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(j,1:nTwin,matID), & right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + & abs(gdot_slip(j)) constitutive_phenopowerlaw_dotState(offset_accshear_slip+j) = abs(gdot_slip(j)) enddo enddo slipFamiliesLoop2 j = 0_pInt twinFamiliesLoop2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j c_TwinSlip * left_TwinSlip(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(j,1:nSlip,matID), & right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor c_TwinTwin * left_TwinTwin(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(j,1:nTwin,matID), & right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor if (state(ipc,ip,el)%p(index_F) < 0.98_pReal) & ! ensure twin volume fractions stays below 1.0 constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + & gdot_twin(j)/lattice_shearTwin(index_myFamily+i,structID) constitutive_phenopowerlaw_dotState(offset_accshear_twin+j) = abs(gdot_twin(j)) enddo enddo twinFamiliesLoop2 end function constitutive_phenopowerlaw_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_postResults(Tstar_v,state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance, & phase_Noutput use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_NnonSchmid use mesh, only: & mesh_NcpElems, & mesh_maxNips implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_postResults integer(pInt) :: & matID,structID, & nSlip,nTwin, & o,f,i,c,j,k, & index_Gamma,index_F,index_accshear_slip,index_accshear_twin,index_myFamily real(pReal) :: & tau_slip_pos,tau_slip_neg,tau matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt index_accshear_slip = nSlip + nTwin + 3_pInt index_accshear_twin = nSlip + nTwin + 3_pInt + nSlip constitutive_phenopowerlaw_postResults = 0.0_pReal c = 0_pInt outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el)) select case(constitutive_phenopowerlaw_outputID(o,matID)) case (resistance_slip_ID) constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(ipc,ip,el)%p(1:nSlip) c = c + nSlip case (accumulatedshear_slip_ID) constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(ipc,ip,el)%p(index_accshear_slip:& index_accshear_slip+nSlip) c = c + nSlip case (shearrate_slip_ID) j = 0_pInt slipFamiliesLoop1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) tau_slip_neg = tau_slip_pos do k = 1,lattice_NnonSchmid(structID) tau_slip_pos = tau_slip_pos + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) tau_slip_neg = tau_slip_neg + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) enddo constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*0.5_pReal* & ((abs(tau_slip_pos)/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID) & +(abs(tau_slip_neg)/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))& *sign(1.0_pReal,tau_slip_pos) enddo enddo slipFamiliesLoop1 c = c + nSlip case (resolvedstress_slip_ID) j = 0_pInt slipFamiliesLoop2: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt constitutive_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) enddo enddo slipFamiliesLoop2 c = c + nSlip case (totalshear_ID) constitutive_phenopowerlaw_postResults(c+1_pInt) = & state(ipc,ip,el)%p(index_Gamma) c = c + 1_pInt case (resistance_twin_ID) constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & state(ipc,ip,el)%p(1_pInt+nSlip:nTwin+nSlip) c = c + nTwin case (accumulatedshear_twin_ID) constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & state(ipc,ip,el)%p(index_accshear_twin:index_accshear_twin+nTwin) c = c + nTwin case (shearrate_twin_ID) j = 0_pInt twinFamiliesLoop1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau)/state(ipc,ip,el)%p(j+nSlip))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau)) enddo enddo twinFamiliesLoop1 c = c + nTwin case (resolvedstress_twin_ID) j = 0_pInt twinFamiliesLoop2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt constitutive_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) enddo enddo twinFamiliesLoop2 c = c + nTwin case (totalvolfrac_ID) constitutive_phenopowerlaw_postResults(c+1_pInt) = state(ipc,ip,el)%p(index_F) c = c + 1_pInt end select enddo outputsLoop end function constitutive_phenopowerlaw_postResults end module constitutive_phenopowerlaw