!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH !> @brief homogenization manager, organizing deformation partitioning and stress homogenization !-------------------------------------------------------------------------------------------------- module homogenization use prec use IO use config use debug use math use material use numerics use constitutive use crystallite use FEsolving use discretization use thermal_isothermal use thermal_adiabatic use thermal_conduction use damage_none use damage_local use damage_nonlocal use results implicit none private logical, public :: & terminallyIll = .false. !< at least one material point is terminally ill !-------------------------------------------------------------------------------------------------- ! General variables for the homogenization at a material point real(pReal), dimension(:,:,:,:), allocatable, public :: & materialpoint_F0, & !< def grad of IP at start of FE increment materialpoint_F !< def grad of IP to be reached at end of FE increment real(pReal), dimension(:,:,:,:), allocatable, public, protected :: & materialpoint_P !< first P--K stress of IP real(pReal), dimension(:,:,:,:,:,:), allocatable, public, protected :: & materialpoint_dPdF !< tangent of first P--K stress at IP type :: tNumerics integer :: & nMPstate !< materialpoint state loop limit real(pReal) :: & subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization subStepSizeHomog, & !< size of first substep when cutback in homogenization stepIncreaseHomog !< increase of next substep size when previous substep converged in homogenization end type tNumerics type(tNumerics) :: num interface module subroutine mech_none_init end subroutine mech_none_init module subroutine mech_isostrain_init end subroutine mech_isostrain_init module subroutine mech_RGC_init end subroutine mech_RGC_init module subroutine mech_isostrain_partitionDeformation(F,avgF) real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point end subroutine mech_isostrain_partitionDeformation module subroutine mech_RGC_partitionDeformation(F,avgF,instance,of) real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point integer, intent(in) :: & instance, & of end subroutine mech_RGC_partitionDeformation module subroutine mech_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance) real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses integer, intent(in) :: instance end subroutine mech_isostrain_averageStressAndItsTangent module subroutine mech_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance) real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses integer, intent(in) :: instance end subroutine mech_RGC_averageStressAndItsTangent module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el) logical, dimension(2) :: mech_RGC_updateState real(pReal), dimension(:,:,:), intent(in) :: & P,& !< partitioned stresses F,& !< partitioned deformation gradients F0 !< partitioned initial deformation gradients real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses real(pReal), dimension(3,3), intent(in) :: avgF !< average F real(pReal), intent(in) :: dt !< time increment integer, intent(in) :: & ip, & !< integration point number el !< element number end function mech_RGC_updateState module subroutine mech_RGC_results(instance,group) integer, intent(in) :: instance !< homogenization instance character(len=*), intent(in) :: group !< group name in HDF5 file end subroutine mech_RGC_results end interface public :: & homogenization_init, & materialpoint_stressAndItsTangent, & homogenization_results contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !-------------------------------------------------------------------------------------------------- subroutine homogenization_init if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) call mech_none_init if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) call mech_isostrain_init if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) call mech_RGC_init if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init if (any(thermal_type == THERMAL_adiabatic_ID)) call thermal_adiabatic_init if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init if (any(damage_type == DAMAGE_none_ID)) call damage_none_init if (any(damage_type == DAMAGE_local_ID)) call damage_local_init if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init call config_deallocate('material.config/homogenization') !-------------------------------------------------------------------------------------------------- ! allocate and initialize global variables allocate(materialpoint_dPdF(3,3,3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) materialpoint_F0 = spread(spread(math_I3,3,discretization_nIP),4,discretization_nElem) ! initialize to identity materialpoint_F = materialpoint_F0 ! initialize to identity allocate(materialpoint_P(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal) write(6,'(/,a)') ' <<<+- homogenization init -+>>>'; flush(6) if (debug_g < 1 .or. debug_g > homogenization_Ngrains(material_homogenizationAt(debug_e))) & call IO_error(602,ext_msg='constituent', el=debug_e, g=debug_g) num%nMPstate = config_numerics%getInt( 'nmpstate', defaultVal=10) num%subStepMinHomog = config_numerics%getFloat('substepminhomog', defaultVal=1.0e-3_pReal) num%subStepSizeHomog = config_numerics%getFloat('substepsizehomog', defaultVal=0.25_pReal) num%stepIncreaseHomog = config_numerics%getFloat('stepincreasehomog', defaultVal=1.5_pReal) if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate') if (num%subStepMinHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinHomog') if (num%subStepSizeHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeHomog') if (num%stepIncreaseHomog <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseHomog') end subroutine homogenization_init !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of stress and corresponding tangent at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_stressAndItsTangent(updateJaco,dt) real(pReal), intent(in) :: dt !< time increment logical, intent(in) :: updateJaco !< initiating Jacobian update integer :: & NiterationHomog, & NiterationMPstate, & g, & !< grain number i, & !< integration point number e, & !< element number mySource, & myNgrains real(pReal), dimension(discretization_nIP,discretization_nElem) :: & subFrac, & subStep logical, dimension(discretization_nIP,discretization_nElem) :: & requested, & converged logical, dimension(2,discretization_nIP,discretization_nElem) :: & doneAndHappy #ifdef DEBUG if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', & transpose(materialpoint_F0(1:3,1:3,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', & transpose(materialpoint_F(1:3,1:3,debug_i,debug_e)) endif #endif !-------------------------------------------------------------------------------------------------- ! initialize restoration points do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) do i = FEsolving_execIP(1),FEsolving_execIP(2); do g = 1,myNgrains plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%state0( :,material_phasememberAt(g,i,e)) do mySource = 1, phase_Nsources(material_phaseAt(g,e)) sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = & sourceState(material_phaseAt(g,e))%p(mySource)%state0( :,material_phasememberAt(g,i,e)) enddo crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e) crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e) crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) crystallite_partionedS0(1:3,1:3,g,i,e) = crystallite_S0(1:3,1:3,g,i,e) enddo subFrac(i,e) = 0.0_pReal converged(i,e) = .false. ! pretend failed step ... subStep(i,e) = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation requested(i,e) = .true. ! everybody requires calculation if (homogState(material_homogenizationAt(e))%sizeState > 0) & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) if (thermalState(material_homogenizationAt(e))%sizeState > 0) & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) if (damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e)) enddo enddo NiterationHomog = 0 cutBackLooping: do while (.not. terminallyIll .and. & any(subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > num%subStepMinHomog)) !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2) if (converged(i,e)) then #ifdef DEBUG if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', & subFrac(i,e), 'to current subFrac', & subFrac(i,e)+subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i endif #endif !--------------------------------------------------------------------------------------------------- ! calculate new subStep and new subFrac subFrac(i,e) = subFrac(i,e) + subStep(i,e) subStep(i,e) = min(1.0_pReal-subFrac(i,e),num%stepIncreaseHomog*subStep(i,e)) ! introduce flexibility for step increase/acceleration steppingNeeded: if (subStep(i,e) > num%subStepMinHomog) then ! wind forward grain starting point crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp (1:3,1:3,1:myNgrains,i,e) crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp (1:3,1:3,1:myNgrains,i,e) crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fi (1:3,1:3,1:myNgrains,i,e) crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Li (1:3,1:3,1:myNgrains,i,e) crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = crystallite_S (1:3,1:3,1:myNgrains,i,e) do g = 1,myNgrains plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%state (:,material_phasememberAt(g,i,e)) do mySource = 1, phase_Nsources(material_phaseAt(g,e)) sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = & sourceState(material_phaseAt(g,e))%p(mySource)%state (:,material_phasememberAt(g,i,e)) enddo enddo if(homogState(material_homogenizationAt(e))%sizeState > 0) & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) if(thermalState(material_homogenizationAt(e))%sizeState > 0) & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) if(damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e)) endif steppingNeeded else if ( (myNgrains == 1 .and. subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite num%subStepSizeHomog * subStep(i,e) <= num%subStepMinHomog ) then ! would require too small subStep ! cutback makes no sense if (.not. terminallyIll) then ! so first signals terminally ill... !$OMP CRITICAL (write2out) write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill' !$OMP END CRITICAL (write2out) endif terminallyIll = .true. ! ...and kills all others else ! cutback makes sense subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback #ifdef DEBUG if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then write(6,'(a,1x,f12.8,a,i8,1x,i2/)') & '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new subStep:',& subStep(i,e),' at el ip',e,i endif #endif !-------------------------------------------------------------------------------------------------- ! restore if (subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1 crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) crystallite_Li(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) endif ! maybe protecting everything from overwriting (not only L) makes even more sense crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) crystallite_S (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) do g = 1, myNgrains plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = & plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) do mySource = 1, phase_Nsources(material_phaseAt(g,e)) sourceState(material_phaseAt(g,e))%p(mySource)%state( :,material_phasememberAt(g,i,e)) = & sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) enddo enddo if(homogState(material_homogenizationAt(e))%sizeState > 0) & homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) if(thermalState(material_homogenizationAt(e))%sizeState > 0) & thermalState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) if(damageState(material_homogenizationAt(e))%sizeState > 0) & damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = & damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) endif endif if (subStep(i,e) > num%subStepMinHomog) then requested(i,e) = .true. doneAndHappy(1:2,i,e) = [.false.,.true.] endif enddo IpLooping1 enddo elementLooping1 !$OMP END PARALLEL DO NiterationMPstate = 0 convergenceLooping: do while (.not. terminallyIll .and. & any( requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & ) .and. & NiterationMPstate < num%nMPstate) NiterationMPstate = NiterationMPstate + 1 !-------------------------------------------------------------------------------------------------- ! deformation partitioning !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(material_homogenizationAt(e)) IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2) if(requested(i,e) .and. .not. doneAndHappy(1,i,e)) then ! requested but not yet done call partitionDeformation(materialpoint_F0(1:3,1:3,i,e) & + (materialpoint_F(1:3,1:3,i,e)-materialpoint_F0(1:3,1:3,i,e))& *(subStep(i,e)+subFrac(i,e)), & i,e) crystallite_dt(1:myNgrains,i,e) = dt*subStep(i,e) ! propagate materialpoint dt to grains crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents else crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore endif enddo IpLooping2 enddo elementLooping2 !$OMP END PARALLEL DO !-------------------------------------------------------------------------------------------------- ! crystallite integration converged = crystallite_stress() !ToDo: MD not sure if that is the best logic !-------------------------------------------------------------------------------------------------- ! state update !$OMP PARALLEL DO elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2) if (requested(i,e) .and. .not. doneAndHappy(1,i,e)) then if (.not. converged(i,e)) then doneAndHappy(1:2,i,e) = [.true.,.false.] else doneAndHappy(1:2,i,e) = updateState(dt*subStep(i,e), & materialpoint_F0(1:3,1:3,i,e) & + (materialpoint_F(1:3,1:3,i,e)-materialpoint_F0(1:3,1:3,i,e)) & *(subStep(i,e)+subFrac(i,e)), & i,e) converged(i,e) = all(doneAndHappy(1:2,i,e)) ! converged if done and happy endif endif enddo IpLooping3 enddo elementLooping3 !$OMP END PARALLEL DO enddo convergenceLooping NiterationHomog = NiterationHomog + 1 enddo cutBackLooping if(updateJaco) call crystallite_stressTangent if (.not. terminallyIll ) then call crystallite_orientations() ! calculate crystal orientations !$OMP PARALLEL DO elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping4: do i = FEsolving_execIP(1),FEsolving_execIP(2) call averageStressAndItsTangent(i,e) enddo IpLooping4 enddo elementLooping4 !$OMP END PARALLEL DO else write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill' endif end subroutine materialpoint_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief partition material point def grad onto constituents !-------------------------------------------------------------------------------------------------- subroutine partitionDeformation(subF,ip,el) real(pReal), intent(in), dimension(3,3) :: & subF integer, intent(in) :: & ip, & !< integration point el !< element number chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization crystallite_partionedF(1:3,1:3,1,ip,el) = subF case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization call mech_isostrain_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & subF) case (HOMOGENIZATION_RGC_ID) chosenHomogenization call mech_RGC_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & subF,& ip, & el) end select chosenHomogenization end subroutine partitionDeformation !-------------------------------------------------------------------------------------------------- !> @brief update the internal state of the homogenization scheme and tell whether "done" and !> "happy" with result !-------------------------------------------------------------------------------------------------- function updateState(subdt,subF,ip,el) real(pReal), intent(in) :: & subdt !< current time step real(pReal), intent(in), dimension(3,3) :: & subF integer, intent(in) :: & ip, & !< integration point el !< element number logical, dimension(2) :: updateState updateState = .true. chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) case (HOMOGENIZATION_RGC_ID) chosenHomogenization updateState = & updateState .and. & mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),& subF,& subdt, & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & ip, & el) end select chosenHomogenization chosenThermal: select case (thermal_type(material_homogenizationAt(el))) case (THERMAL_adiabatic_ID) chosenThermal updateState = & updateState .and. & thermal_adiabatic_updateState(subdt, & ip, & el) end select chosenThermal chosenDamage: select case (damage_type(material_homogenizationAt(el))) case (DAMAGE_local_ID) chosenDamage updateState = & updateState .and. & damage_local_updateState(subdt, & ip, & el) end select chosenDamage end function updateState !-------------------------------------------------------------------------------------------------- !> @brief derive average stress and stiffness from constituent quantities !-------------------------------------------------------------------------------------------------- subroutine averageStressAndItsTangent(ip,el) integer, intent(in) :: & ip, & !< integration point el !< element number chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el) materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el) case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization call mech_isostrain_averageStressAndItsTangent(& materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & homogenization_typeInstance(material_homogenizationAt(el))) case (HOMOGENIZATION_RGC_ID) chosenHomogenization call mech_RGC_averageStressAndItsTangent(& materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), & homogenization_typeInstance(material_homogenizationAt(el))) end select chosenHomogenization end subroutine averageStressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief writes homogenization results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine homogenization_results use material, only: & material_homogenization_type => homogenization_type integer :: p character(len=pStringLen) :: group_base,group !real(pReal), dimension(:,:,:), allocatable :: temp do p=1,size(config_name_homogenization) group_base = 'current/materialpoint/'//trim(config_name_homogenization(p)) call results_closeGroup(results_addGroup(group_base)) group = trim(group_base)//'/generic' call results_closeGroup(results_addGroup(group)) !temp = reshape(materialpoint_F,[3,3,discretization_nIP*discretization_nElem]) !call results_writeDataset(group,temp,'F',& ! 'deformation gradient','1') !temp = reshape(materialpoint_P,[3,3,discretization_nIP*discretization_nElem]) !call results_writeDataset(group,temp,'P',& ! '1st Piola-Kirchoff stress','Pa') group = trim(group_base)//'/mech' call results_closeGroup(results_addGroup(group)) select case(material_homogenization_type(p)) case(HOMOGENIZATION_rgc_ID) call mech_RGC_results(homogenization_typeInstance(p),group) end select group = trim(group_base)//'/damage' call results_closeGroup(results_addGroup(group)) select case(damage_type(p)) case(DAMAGE_LOCAL_ID) call damage_local_results(p,group) case(DAMAGE_NONLOCAL_ID) call damage_nonlocal_results(p,group) end select group = trim(group_base)//'/thermal' call results_closeGroup(results_addGroup(group)) select case(thermal_type(p)) case(THERMAL_ADIABATIC_ID) call thermal_adiabatic_results(p,group) case(THERMAL_CONDUCTION_ID) call thermal_conduction_results(p,group) end select enddo end subroutine homogenization_results end module homogenization