!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief Sets up the mesh for the solver MSC.Marc !-------------------------------------------------------------------------------------------------- module mesh use IO use prec use math use DAMASK_interface use IO use debug use numerics use FEsolving use element use discretization use geometry_plastic_nonlocal use results implicit none private type tCellNodeDefinition integer, dimension(:,:), allocatable :: parents integer, dimension(:,:), allocatable :: weights end type tCellNodeDefinition type(tCellNodeDefinition), dimension(:), allocatable :: cellNodeDefinition real(pReal), public, protected :: & mesh_unitlength !< physical length of one unit in mesh integer, dimension(:,:), allocatable, target :: & mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid] mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid] public :: & mesh_init, & mesh_FEasCP contains !-------------------------------------------------------------------------------------------------- !> @brief initializes the mesh by calling all necessary private routines the mesh module !! Order and routines strongly depend on type of solver !-------------------------------------------------------------------------------------------------- subroutine mesh_init(ip,el) integer, intent(in) :: el, ip real(pReal), dimension(:,:), allocatable :: & node0_elem, & !< node x,y,z coordinates (initially!) node0_cell type(tElement) :: elem integer :: nElems integer, dimension(:), allocatable :: & microstructureAt, & homogenizationAt integer:: & Nnodes !< total number of nodes in mesh real(pReal), dimension(:,:), allocatable :: & IP_reshaped integer,dimension(:,:,:), allocatable :: & connectivity_cell !< cell connectivity for each element,ip/cell integer, dimension(:,:), allocatable :: & connectivity_elem real(pReal), dimension(:,:,:,:),allocatable :: & unscaledNormals write(6,'(/,a)') ' <<<+- mesh init -+>>>'; flush(6) mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh call inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogenizationAt) nElems = size(connectivity_elem,2) if (debug_e < 1 .or. debug_e > nElems) call IO_error(602,ext_msg='element') if (debug_i < 1 .or. debug_i > elem%nIPs) call IO_error(602,ext_msg='IP') FEsolving_execElem = [1,nElems] FEsolving_execIP = [1,elem%nIPs] allocate(calcMode(elem%nIPs,nElems),source=.false.) ! pretend to have collected what first call is asking (F = I) calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc" allocate(cellNodeDefinition(elem%nNodes-1)) allocate(connectivity_cell(elem%NcellNodesPerCell,elem%nIPs,nElems)) call buildCells(connectivity_cell,cellNodeDefinition,& elem,connectivity_elem) allocate(node0_cell(3,maxval(connectivity_cell))) call buildCellNodes(node0_cell,& cellNodeDefinition,node0_elem) allocate(IP_reshaped(3,elem%nIPs*nElems),source=0.0_pReal) call buildIPcoordinates(IP_reshaped,reshape(connectivity_cell,[elem%NcellNodesPerCell,& elem%nIPs*nElems]),node0_cell) call discretization_init(microstructureAt,homogenizationAt,& IP_reshaped,& node0_cell) call writeGeometry(elem,connectivity_elem,& reshape(connectivity_cell,[elem%NcellNodesPerCell,elem%nIPs*nElems]),& node0_cell,IP_reshaped) !-------------------------------------------------------------------------------------------------- ! geometry information required by the nonlocal CP model call geometry_plastic_nonlocal_setIPvolume(IPvolume(elem,node0_cell,connectivity_cell)) unscaledNormals = IPareaNormal(elem,nElems,connectivity_cell,node0_cell) call geometry_plastic_nonlocal_setIParea(norm2(unscaledNormals,1)) call geometry_plastic_nonlocal_setIPareaNormal(unscaledNormals/spread(norm2(unscaledNormals,1),1,3)) call geometry_plastic_nonlocal_results end subroutine mesh_init !-------------------------------------------------------------------------------------------------- !> @brief Write all information needed for the DADF5 geometry !-------------------------------------------------------------------------------------------------- subroutine writeGeometry(elem, & connectivity_elem,connectivity_cell, & coordinates_nodes,coordinates_points) type(tElement), intent(in) :: & elem integer, dimension(:,:), intent(in) :: & connectivity_elem, & connectivity_cell real(pReal), dimension(:,:), intent(in) :: & coordinates_nodes, & coordinates_points integer, dimension(:,:), allocatable :: & connectivity_temp real(pReal), dimension(:,:), allocatable :: & coordinates_temp call results_openJobFile call results_closeGroup(results_addGroup('geometry')) connectivity_temp = connectivity_elem call results_writeDataset('geometry',connectivity_temp,'T_e',& 'connectivity of the elements','-') connectivity_temp = connectivity_cell call results_writeDataset('geometry',connectivity_temp,'T_c', & 'connectivity of the cells','-') call results_addAttribute('VTK_TYPE',elem%vtkType,'geometry/T_c') coordinates_temp = coordinates_nodes call results_writeDataset('geometry',coordinates_temp,'x_n', & 'initial coordinates of the nodes','m') coordinates_temp = coordinates_points call results_writeDataset('geometry',coordinates_temp,'x_p', & 'initial coordinates of the materialpoints','m') call results_closeJobFile end subroutine writeGeometry !-------------------------------------------------------------------------------------------------- !> @brief Read mesh from marc input file !-------------------------------------------------------------------------------------------------- subroutine inputRead(elem,node0_elem,connectivity_elem,microstructureAt,homogenizationAt) type(tElement), intent(out) :: elem real(pReal), dimension(:,:), allocatable, intent(out) :: & node0_elem !< node x,y,z coordinates (initially!) integer, dimension(:,:), allocatable, intent(out) :: & connectivity_elem integer, dimension(:), allocatable, intent(out) :: & microstructureAt, & homogenizationAt integer :: & fileFormatVersion, & hypoelasticTableStyle, & initialcondTableStyle, & nNodes, & nElems integer, dimension(:), allocatable :: & matNumber !< material numbers for hypoelastic material character(len=pStringLen), dimension(:), allocatable :: inputFile !< file content, separated per lines character(len=pStringLen), dimension(:), allocatable :: & nameElemSet integer, dimension(:,:), allocatable :: & mapElemSet !< list of elements in elementSet inputFile = IO_read_ASCII(trim(getSolverJobName())//trim(InputFileExtension)) call inputRead_fileFormat(fileFormatVersion, & inputFile) call inputRead_tableStyles(initialcondTableStyle,hypoelasticTableStyle, & inputFile) if (fileFormatVersion > 12) & call inputRead_matNumber(matNumber, & hypoelasticTableStyle,inputFile) call inputRead_NnodesAndElements(nNodes,nElems,& inputFile) call inputRead_mapElemSets(nameElemSet,mapElemSet,& inputFile) call inputRead_elemType(elem, & nElems,inputFile) allocate (mesh_mapFEtoCPelem(2,nElems), source=0) call inputRead_mapElems(elem%nNodes,& inputFile) allocate (mesh_mapFEtoCPnode(2,Nnodes), source=0) call inputRead_mapNodes(inputFile) call inputRead_elemNodes(node0_elem, & Nnodes,inputFile) connectivity_elem = inputRead_connectivityElem(nElems,elem%nNodes,inputFile) call inputRead_microstructureAndHomogenization(microstructureAt,homogenizationAt, & nElems,elem%nNodes,nameElemSet,mapElemSet,& initialcondTableStyle,inputFile) end subroutine inputRead !-------------------------------------------------------------------------------------------------- !> @brief Figures out version of Marc input file format !-------------------------------------------------------------------------------------------------- subroutine inputRead_fileFormat(fileFormat,fileContent) integer, intent(out) :: fileFormat character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: l do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if ( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'version') then fileFormat = IO_intValue(fileContent(l),chunkPos,2) exit endif enddo end subroutine inputRead_fileFormat !-------------------------------------------------------------------------------------------------- !> @brief Figures out table styles for initial cond and hypoelastic !-------------------------------------------------------------------------------------------------- subroutine inputRead_tableStyles(initialcond,hypoelastic,fileContent) integer, intent(out) :: initialcond, hypoelastic character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: l initialcond = 0 hypoelastic = 0 do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if ( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'table' .and. chunkPos(1) > 5) then initialcond = IO_intValue(fileContent(l),chunkPos,4) hypoelastic = IO_intValue(fileContent(l),chunkPos,5) exit endif enddo end subroutine inputRead_tableStyles !-------------------------------------------------------------------------------------------------- !> @brief Figures out material number of hypoelastic material !-------------------------------------------------------------------------------------------------- subroutine inputRead_matNumber(matNumber, & tableStyle,fileContent) integer, allocatable, dimension(:), intent(out) :: matNumber integer, intent(in) :: tableStyle character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: i, j, data_blocks, l do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if ( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'hypoelastic') then if (len_trim(fileContent(l+1))/=0) then chunkPos = IO_stringPos(fileContent(l+1)) data_blocks = IO_intValue(fileContent(l+1),chunkPos,1) else data_blocks = 1 endif allocate(matNumber(data_blocks), source = 0) do i = 0, data_blocks - 1 j = i*(2+tableStyle) + 1 chunkPos = IO_stringPos(fileContent(l+1+j)) matNumber(i+1) = IO_intValue(fileContent(l+1+j),chunkPos,1) enddo exit endif enddo end subroutine inputRead_matNumber !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of nodes and elements !-------------------------------------------------------------------------------------------------- subroutine inputRead_NnodesAndElements(nNodes,nElems,& fileContent) integer, intent(out) :: nNodes, nElems character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: l nNodes = 0 nElems = 0 do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if (IO_lc(IO_StringValue(fileContent(l),chunkPos,1)) == 'sizing') then nElems = IO_IntValue (fileContent(l),chunkPos,3) elseif (IO_lc(IO_StringValue(fileContent(l),chunkPos,1)) == 'coordinates') then chunkPos = IO_stringPos(fileContent(l+1)) nNodes = IO_IntValue (fileContent(l+1),chunkPos,2) endif enddo end subroutine inputRead_NnodesAndElements !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of element sets in mesh. !-------------------------------------------------------------------------------------------------- subroutine inputRead_NelemSets(nElemSets,maxNelemInSet,& fileContent) integer, intent(out) :: nElemSets, maxNelemInSet character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: i,l,elemInCurrentSet nElemSets = 0 maxNelemInSet = 0 do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if ( IO_lc(IO_StringValue(fileContent(l),chunkPos,1)) == 'define' .and. & IO_lc(IO_StringValue(fileContent(l),chunkPos,2)) == 'element' ) then nElemSets = nElemSets + 1 chunkPos = IO_stringPos(fileContent(l+1)) if(IO_lc(IO_StringValue(fileContent(l+1),chunkPos,2)) == 'to' ) then elemInCurrentSet = 1 + abs( IO_intValue(fileContent(l+1),chunkPos,3) & -IO_intValue(fileContent(l+1),chunkPos,1)) else elemInCurrentSet = 0 i = 0 do while (.true.) i = i + 1 chunkPos = IO_stringPos(fileContent(l+i)) elemInCurrentSet = elemInCurrentSet + chunkPos(1) - 1 ! add line's count when assuming 'c' if(IO_lc(IO_stringValue(fileContent(l+i),chunkPos,chunkPos(1))) /= 'c') then ! line finished, read last value elemInCurrentSet = elemInCurrentSet + 1 ! data ended exit endif enddo endif maxNelemInSet = max(maxNelemInSet, elemInCurrentSet) endif enddo end subroutine inputRead_NelemSets !-------------------------------------------------------------------------------------------------- !> @brief map element sets !-------------------------------------------------------------------------------------------------- subroutine inputRead_mapElemSets(nameElemSet,mapElemSet,& fileContent) character(len=pStringLen), dimension(:), allocatable, intent(out) :: nameElemSet integer, dimension(:,:), allocatable, intent(out) :: mapElemSet character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: elemSet, NelemSets, maxNelemInSet,l call inputRead_NelemSets(NelemSets,maxNelemInSet,fileContent) allocate(nameElemSet(NelemSets)); nameElemSet = 'n/a' allocate(mapElemSet(1+maxNelemInSet,NelemSets),source=0) elemSet = 0 do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( (IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'define' ) .and. & (IO_lc(IO_stringValue(fileContent(l),chunkPos,2)) == 'element' ) ) then elemSet = elemSet+1 nameElemSet(elemSet) = trim(IO_stringValue(fileContent(l),chunkPos,4)) mapElemSet(:,elemSet) = continuousIntValues(fileContent(l+1:),size(mapElemSet,1)-1,nameElemSet,mapElemSet,size(nameElemSet)) endif enddo end subroutine inputRead_mapElemSets !-------------------------------------------------------------------------------------------------- !> @brief Maps elements from FE ID to internal (consecutive) representation. !-------------------------------------------------------------------------------------------------- subroutine inputRead_mapElems(nNodes,fileContent) integer, intent(in) :: nNodes !< number of nodes per element character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: i,j,l,nNodesAlreadyRead do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'connectivity' ) then j = 0 do i = 1,size(mesh_mapFEtoCPelem,2) chunkPos = IO_stringPos(fileContent(l+1+i+j)) mesh_mapFEtoCPelem(:,i) = [IO_intValue(fileContent(l+1+i+j),chunkPos,1),i] nNodesAlreadyRead = chunkPos(1) - 2 do while(nNodesAlreadyRead < nNodes) ! read on if not all nodes in one line j = j + 1 chunkPos = IO_stringPos(fileContent(l+1+i+j)) nNodesAlreadyRead = nNodesAlreadyRead + chunkPos(1) enddo enddo exit endif enddo call math_sort(mesh_mapFEtoCPelem) end subroutine inputRead_mapElems !-------------------------------------------------------------------------------------------------- !> @brief Maps node from FE ID to internal (consecutive) representation. !-------------------------------------------------------------------------------------------------- subroutine inputRead_mapNodes(fileContent) character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: i, l do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'coordinates' ) then do i = 1,size(mesh_mapFEtoCPnode,2) chunkPos = IO_stringPos(fileContent(l+1+i)) mesh_mapFEtoCPnode(:,i) = [IO_intValue(fileContent(l+1+i),chunkPos,1),i] enddo exit endif enddo call math_sort(mesh_mapFEtoCPnode) end subroutine inputRead_mapNodes !-------------------------------------------------------------------------------------------------- !> @brief store x,y,z coordinates of all nodes in mesh. !-------------------------------------------------------------------------------------------------- subroutine inputRead_elemNodes(nodes, & nNode,fileContent) real(pReal), allocatable, dimension(:,:), intent(out) :: nodes integer, intent(in) :: nNode character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: i,j,m,l allocate(nodes(3,nNode)) do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'coordinates' ) then do i=1,nNode chunkPos = IO_stringPos(fileContent(l+1+i)) m = mesh_FEasCP('node',IO_intValue(fileContent(l+1+i),chunkPos,1)) do j = 1,3 nodes(j,m) = mesh_unitlength * IO_floatValue(fileContent(l+1+i),chunkPos,j+1) enddo enddo exit endif enddo end subroutine inputRead_elemNodes !-------------------------------------------------------------------------------------------------- !> @brief Gets element type (and checks if the whole mesh comprises of only one type) !-------------------------------------------------------------------------------------------------- subroutine inputRead_elemType(elem, & nElem,fileContent) type(tElement), intent(out) :: elem integer, intent(in) :: nElem character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer :: i,j,t,l,remainingChunks t = -1 do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'connectivity' ) then j = 0 do i=1,nElem ! read all elements chunkPos = IO_stringPos(fileContent(l+1+i+j)) if (t == -1) then t = mapElemtype(IO_stringValue(fileContent(l+1+i+j),chunkPos,2)) call elem%init(t) else if (t /= mapElemtype(IO_stringValue(fileContent(l+1+i+j),chunkPos,2))) call IO_error(191,el=t,ip=i) endif remainingChunks = elem%nNodes - (chunkPos(1) - 2) do while(remainingChunks > 0) j = j + 1 chunkPos = IO_stringPos(fileContent(l+1+i+j)) remainingChunks = remainingChunks - chunkPos(1) enddo enddo exit endif enddo contains !-------------------------------------------------------------------------------------------------- !> @brief mapping of Marc element types to internal representation !-------------------------------------------------------------------------------------------------- integer function mapElemtype(what) character(len=*), intent(in) :: what select case (IO_lc(what)) case ( '6') mapElemtype = 1 ! Two-dimensional Plane Strain Triangle case ( '155', & '125', & '128') mapElemtype = 2 ! Two-dimensional Plane Strain triangle (155: cubic shape function, 125/128: second order isoparametric) case ( '11') mapElemtype = 3 ! Arbitrary Quadrilateral Plane-strain case ( '27') mapElemtype = 4 ! Plane Strain, Eight-node Distorted Quadrilateral case ( '54') mapElemtype = 5 ! Plane Strain, Eight-node Distorted Quadrilateral with reduced integration case ( '134') mapElemtype = 6 ! Three-dimensional Four-node Tetrahedron case ( '157') mapElemtype = 7 ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations case ( '127') mapElemtype = 8 ! Three-dimensional Ten-node Tetrahedron case ( '136') mapElemtype = 9 ! Three-dimensional Arbitrarily Distorted Pentahedral case ( '117', & '123') mapElemtype = 10 ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration case ( '7') mapElemtype = 11 ! Three-dimensional Arbitrarily Distorted Brick case ( '57') mapElemtype = 12 ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration case ( '21') mapElemtype = 13 ! Three-dimensional Arbitrarily Distorted quadratic hexahedral case default call IO_error(error_ID=190,ext_msg=IO_lc(what)) end select end function mapElemtype end subroutine inputRead_elemType !-------------------------------------------------------------------------------------------------- !> @brief Stores node IDs !-------------------------------------------------------------------------------------------------- function inputRead_connectivityElem(nElem,nNodes,fileContent) integer, intent(in) :: & nElem, & nNodes !< number of nodes per element character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, dimension(nNodes,nElem) :: & inputRead_connectivityElem integer, allocatable, dimension(:) :: chunkPos integer, dimension(1+nElem) :: contInts integer :: i,k,j,t,e,l,nNodesAlreadyRead do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'connectivity' ) then j = 0 do i = 1,nElem chunkPos = IO_stringPos(fileContent(l+1+i+j)) e = mesh_FEasCP('elem',IO_intValue(fileContent(l+1+i+j),chunkPos,1)) if (e /= 0) then ! disregard non CP elems do k = 1,chunkPos(1)-2 inputRead_connectivityElem(k,e) = & mesh_FEasCP('node',IO_IntValue(fileContent(l+1+i+j),chunkPos,k+2)) enddo nNodesAlreadyRead = chunkPos(1) - 2 do while(nNodesAlreadyRead < nNodes) ! read on if not all nodes in one line j = j + 1 chunkPos = IO_stringPos(fileContent(l+1+i+j)) do k = 1,chunkPos(1) inputRead_connectivityElem(nNodesAlreadyRead+k,e) = & mesh_FEasCP('node',IO_IntValue(fileContent(l+1+i+j),chunkPos,k)) enddo nNodesAlreadyRead = nNodesAlreadyRead + chunkPos(1) enddo endif enddo exit endif enddo end function inputRead_connectivityElem !-------------------------------------------------------------------------------------------------- !> @brief Stores homogenization and microstructure ID !-------------------------------------------------------------------------------------------------- subroutine inputRead_microstructureAndHomogenization(microstructureAt,homogenizationAt, & nElem,nNodes,nameElemSet,mapElemSet,initialcondTableStyle,fileContent) integer, dimension(:), allocatable, intent(out) :: & microstructureAt, & homogenizationAt integer, intent(in) :: & nElem, & nNodes, & !< number of nodes per element initialcondTableStyle character(len=*), dimension(:), intent(in) :: nameElemSet integer, dimension(:,:), intent(in) :: mapElemSet !< list of elements in elementSet character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, allocatable, dimension(:) :: chunkPos integer, dimension(1+nElem) :: contInts integer :: i,j,t,sv,myVal,e,nNodesAlreadyRead,l,k,m allocate(microstructureAt(nElem),source=0) allocate(homogenizationAt(nElem),source=0) do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if( (IO_lc(IO_stringValue(fileContent(l),chunkPos,1)) == 'initial') .and. & (IO_lc(IO_stringValue(fileContent(l),chunkPos,2)) == 'state') ) then k = merge(2,1,initialcondTableStyle == 2) chunkPos = IO_stringPos(fileContent(l+k)) sv = IO_IntValue(fileContent(l+k),chunkPos,1) ! figure state variable index if( (sv == 2) .or. (sv == 3) ) then ! only state vars 2 and 3 of interest m = 1 chunkPos = IO_stringPos(fileContent(l+k+m)) do while (scan(IO_stringValue(fileContent(l+k+m),chunkPos,1),'+-',back=.true.)>1) ! is noEfloat value? myVal = nint(IO_floatValue(fileContent(l+k+m),chunkPos,1)) if (initialcondTableStyle == 2) m = m + 2 contInts = continuousIntValues(fileContent(l+k+m+1:),nElem,nameElemSet,mapElemSet,size(nameElemSet)) ! get affected elements do i = 1,contInts(1) e = mesh_FEasCP('elem',contInts(1+i)) if (sv == 2) microstructureAt(e) = myVal if (sv == 3) homogenizationAt(e) = myVal enddo if (initialcondTableStyle == 0) m = m + 1 enddo endif endif enddo end subroutine inputRead_microstructureAndHomogenization !-------------------------------------------------------------------------------------------------- !> @brief Calculates cell node coordinates from element node coordinates !-------------------------------------------------------------------------------------------------- subroutine buildCells(connectivity_cell,cellNodeDefinition, & elem,connectivity_elem) type(tCellNodeDefinition), dimension(:), intent(out) :: cellNodeDefinition ! definition of cell nodes for increasing number of parents integer, dimension(:,:,:),intent(out) :: connectivity_cell type(tElement), intent(in) :: elem ! element definition integer, dimension(:,:), intent(in) :: connectivity_elem ! connectivity of the elements integer,dimension(:), allocatable :: candidates_local integer,dimension(:,:), allocatable :: parentsAndWeights,candidates_global integer :: e, n, c, p, s,i,m,j,nParentNodes,nCellNode,Nelem,candidateID Nelem = size(connectivity_elem,2) !--------------------------------------------------------------------------------------------------- ! initialize global connectivity to negative local connectivity connectivity_cell = -spread(elem%cell,3,Nelem) ! local cell node ID !--------------------------------------------------------------------------------------------------- ! set connectivity of cell nodes that coincide with FE nodes (defined by 1 parent node) ! and renumber local (negative) to global (positive) node ID do e = 1, Nelem do c = 1, elem%NcellNodes realNode: if (count(elem%cellNodeParentNodeWeights(:,c) /= 0) == 1) then where(connectivity_cell(:,:,e) == -c) connectivity_cell(:,:,e) = connectivity_elem(c,e) end where endif realNode enddo enddo nCellNode = maxval(connectivity_elem) !--------------------------------------------------------------------------------------------------- ! set connectivity of cell nodes that are defined by 2,...,nNodes real nodes do nParentNodes = 2, elem%nNodes ! get IDs of local cell nodes that are defined by the current number of parent nodes candidates_local = [integer::] do c = 1, elem%NcellNodes if (count(elem%cellNodeParentNodeWeights(:,c) /= 0) == nParentNodes) & candidates_local = [candidates_local,c] enddo s = size(candidates_local) if (allocated(candidates_global)) deallocate(candidates_global) allocate(candidates_global(nParentNodes*2+2,s*Nelem)) ! stores parent node ID + weight together with element ID and cellnode id (local) parentsAndWeights = reshape([(0, i = 1,2*nParentNodes)],[nParentNodes,2]) ! (re)allocate do e = 1, Nelem do i = 1, size(candidates_local) candidateID = (e-1)*size(candidates_local)+i ! including duplicates, runs to (Nelem*size(candidates_local)) c = candidates_local(i) ! c is local cellnode ID for connectivity p = 0 do j = 1, size(elem%cellNodeParentNodeWeights(:,c)) if (elem%cellNodeParentNodeWeights(j,c) /= 0) then ! real node 'j' partly defines cell node 'c' p = p + 1 parentsAndWeights(p,1:2) = [connectivity_elem(j,e),elem%cellNodeParentNodeWeights(j,c)] endif enddo ! store (and order) real node IDs and their weights together with the element number and local ID do p = 1, nParentNodes m = maxloc(parentsAndWeights(:,1),1) candidates_global(p, candidateID) = parentsAndWeights(m,1) candidates_global(p+nParentNodes, candidateID) = parentsAndWeights(m,2) candidates_global(nParentNodes*2+1:nParentNodes*2+2,candidateID) = [e,c] parentsAndWeights(m,1) = -huge(parentsAndWeights(m,1)) ! out of the competition enddo enddo enddo ! sort according to real node IDs + weight (from left to right) call math_sort(candidates_global,sortDim=1) ! sort according to first column do p = 2, nParentNodes*2 n = 1 do while(n <= size(candidates_local)*Nelem) j=0 do while (n+j<= size(candidates_local)*Nelem) if (candidates_global(p-1,n+j)/=candidates_global(p-1,n)) exit j = j + 1 enddo e = n+j-1 if (any(candidates_global(p,n:e)/=candidates_global(p,n))) & call math_sort(candidates_global(:,n:e),sortDim=p) n = e+1 enddo enddo i = uniqueRows(candidates_global(1:2*nParentNodes,:)) allocate(cellNodeDefinition(nParentNodes-1)%parents(i,nParentNodes)) allocate(cellNodeDefinition(nParentNodes-1)%weights(i,nParentNodes)) i = 1 n = 1 do while(n <= size(candidates_local)*Nelem) j=0 parentsAndWeights(:,1) = candidates_global(1:nParentNodes,n+j) parentsAndWeights(:,2) = candidates_global(nParentNodes+1:nParentNodes*2,n+j) e = candidates_global(nParentNodes*2+1,n+j) c = candidates_global(nParentNodes*2+2,n+j) do while (n+j<= size(candidates_local)*Nelem) if (any(candidates_global(1:2*nParentNodes,n+j)/=candidates_global(1:2*nParentNodes,n))) exit where (connectivity_cell(:,:,candidates_global(nParentNodes*2+1,n+j)) == -candidates_global(nParentNodes*2+2,n+j)) ! still locally defined connectivity_cell(:,:,candidates_global(nParentNodes*2+1,n+j)) = nCellNode + 1 ! gets current new cell node id end where j = j+1 enddo nCellNode = nCellNode + 1 cellNodeDefinition(nParentNodes-1)%parents(i,:) = parentsAndWeights(:,1) cellNodeDefinition(nParentNodes-1)%weights(i,:) = parentsAndWeights(:,2) i = i + 1 n = n+j enddo enddo contains !------------------------------------------------------------------------------------------------ !> @brief count unique rows (same rows need to be stored consecutively) !------------------------------------------------------------------------------------------------ pure function uniqueRows(A) result(u) integer, dimension(:,:), intent(in) :: A !< array, rows need to be sorted integer :: & u, & !< # of unique rows r, & !< row counter d !< duplicate counter u = 0 r = 1 do while(r <= size(A,2)) d = 0 do while (r+d<= size(A,2)) if (any(A(:,r)/=A(:,r+d))) exit d = d+1 enddo u = u+1 r = r+d enddo end function uniqueRows end subroutine buildCells !-------------------------------------------------------------------------------------------------- !> @brief Calculates cell node coordinates from element node coordinates !-------------------------------------------------------------------------------------------------- subroutine buildCellNodes(node_cell, & definition,node_elem) real(pReal), dimension(:,:), intent(out) :: node_cell !< cell node coordinates type(tCellNodeDefinition), dimension(:), intent(in) :: definition !< cell node definition (weights and parents) real(pReal), dimension(:,:), intent(in) :: node_elem !< element nodes integer :: i, j, k, n n = size(node_elem,2) node_cell(:,1:n) = node_elem !< initial nodes coincide with element nodes do i = 1, size(cellNodeDefinition,1) do j = 1, size(cellNodeDefinition(i)%parents,1) n = n+1 node_cell(:,n) = 0.0_pReal do k = 1, size(cellNodeDefinition(i)%parents,2) node_cell(:,n) = node_cell(:,n) & + node_cell(:,definition(i)%parents(j,k)) * real(definition(i)%weights(j,k),pReal) enddo node_cell(:,n) = node_cell(:,n)/real(sum(definition(i)%weights(j,:)),pReal) enddo enddo end subroutine buildCellNodes !-------------------------------------------------------------------------------------------------- !> @brief Calculates IP coordinates as center of cell !-------------------------------------------------------------------------------------------------- subroutine buildIPcoordinates(IPcoordinates, & connectivity_cell,node_cell) real(pReal), dimension(:,:), intent(out):: IPcoordinates !< cell-center/IP coordinates integer, dimension(:,:), intent(in) :: connectivity_cell !< connectivity for each cell real(pReal), dimension(:,:), intent(in) :: node_cell !< cell node coordinates integer :: i, n do i = 1, size(connectivity_cell,2) IPcoordinates(:,i) = 0.0_pReal do n = 1, size(connectivity_cell,1) IPcoordinates(:,i) = IPcoordinates(:,i) & + node_cell(:,connectivity_cell(n,i)) enddo IPcoordinates(:,i) = IPcoordinates(:,i)/real(size(connectivity_cell,1),pReal) enddo end subroutine buildIPcoordinates !--------------------------------------------------------------------------------------------------- !> @brief Calculates IP volume. !> @details The IP volume is calculated differently depending on the cell type. !> 2D cells assume an element depth of 1.0 !--------------------------------------------------------------------------------------------------- function IPvolume(elem,node,connectivity) type(tElement), intent(in) :: elem real(pReal), dimension(:,:), intent(in) :: node integer, dimension(:,:,:), intent(in) :: connectivity real(pReal), dimension(elem%nIPs,size(connectivity,3)) :: IPvolume real(pReal), dimension(3) :: x0,x1,x2,x3,x4,x5,x6,x7 integer :: e,i do e = 1,size(connectivity,3) do i = 1,elem%nIPs select case (elem%cellType) case (1) ! 2D 3node IPvolume(i,e) = math_areaTriangle(node(1:3,connectivity(1,i,e)), & node(1:3,connectivity(2,i,e)), & node(1:3,connectivity(3,i,e))) case (2) ! 2D 4node IPvolume(i,e) = math_areaTriangle(node(1:3,connectivity(1,i,e)), & ! assume planar shape, division in two triangles suffices node(1:3,connectivity(2,i,e)), & node(1:3,connectivity(3,i,e))) & + math_areaTriangle(node(1:3,connectivity(3,i,e)), & node(1:3,connectivity(4,i,e)), & node(1:3,connectivity(1,i,e))) case (3) ! 3D 4node IPvolume(i,e) = math_volTetrahedron(node(1:3,connectivity(1,i,e)), & node(1:3,connectivity(2,i,e)), & node(1:3,connectivity(3,i,e)), & node(1:3,connectivity(4,i,e))) case (4) ! 3D 8node ! J. Grandy, Efficient Calculation of Volume of Hexahedral Cells ! Lawrence Livermore National Laboratory ! https://www.osti.gov/servlets/purl/632793 x0 = node(1:3,connectivity(1,i,e)) x1 = node(1:3,connectivity(2,i,e)) x2 = node(1:3,connectivity(4,i,e)) x3 = node(1:3,connectivity(3,i,e)) x4 = node(1:3,connectivity(5,i,e)) x5 = node(1:3,connectivity(6,i,e)) x6 = node(1:3,connectivity(8,i,e)) x7 = node(1:3,connectivity(7,i,e)) IPvolume(i,e) = dot_product((x7-x1)+(x6-x0),math_cross((x7-x2), (x3-x0))) & + dot_product((x6-x0), math_cross((x7-x2)+(x5-x0),(x7-x4))) & + dot_product((x7-x1), math_cross((x5-x0), (x7-x4)+(x3-x0))) IPvolume(i,e) = IPvolume(i,e)/12.0_pReal end select enddo enddo end function IPvolume !-------------------------------------------------------------------------------------------------- !> @brief calculation of IP interface areas !-------------------------------------------------------------------------------------------------- function IPareaNormal(elem,nElem,connectivity,node) type(tElement), intent(in) :: elem integer, intent(in) :: nElem integer, dimension(:,:,:), intent(in) :: connectivity real(pReal), dimension(:,:), intent(in) :: node real(pReal), dimension(3,elem%nIPneighbors,elem%nIPs,nElem) :: ipAreaNormal real(pReal), dimension (3,size(elem%cellFace,1)) :: nodePos integer :: e,i,f,n,m m = size(elem%cellFace,1) do e = 1,nElem do i = 1,elem%nIPs do f = 1,elem%nIPneighbors nodePos = node(1:3,connectivity(elem%cellface(1:m,f),i,e)) select case (elem%cellType) case (1,2) ! 2D 3 or 4 node IPareaNormal(1,f,i,e) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector IPareaNormal(2,f,i,e) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector IPareaNormal(3,f,i,e) = 0.0_pReal case (3) ! 3D 4node IPareaNormal(1:3,f,i,e) = math_cross(nodePos(1:3,2) - nodePos(1:3,1), & nodePos(1:3,3) - nodePos(1:3,1)) case (4) ! 3D 8node ! for this cell type we get the normal of the quadrilateral face as an average of ! four normals of triangular subfaces; since the face consists only of two triangles, ! the sum has to be divided by two; this whole prcedure tries to compensate for ! probable non-planar cell surfaces IPareaNormal(1:3,f,i,e) = 0.0_pReal do n = 1, m IPareaNormal(1:3,f,i,e) = IPareaNormal(1:3,f,i,e) & + math_cross(nodePos(1:3,mod(n+0,m)+1) - nodePos(1:3,n), & nodePos(1:3,mod(n+1,m)+1) - nodePos(1:3,n)) * 0.5_pReal enddo end select enddo enddo enddo end function IPareaNormal !-------------------------------------------------------------------------------------------------- !> @brief Gives the FE to CP ID mapping by binary search through lookup array !! valid questions (what) are 'elem', 'node' !-------------------------------------------------------------------------------------------------- integer function mesh_FEasCP(what,myID) character(len=*), intent(in) :: what integer, intent(in) :: myID integer, dimension(:,:), pointer :: lookupMap integer :: lower,upper,center mesh_FEasCP = 0 select case(IO_lc(what(1:4))) case('elem') lookupMap => mesh_mapFEtoCPelem case('node') lookupMap => mesh_mapFEtoCPnode case default return endselect lower = 1 upper = int(size(lookupMap,2),pInt) if (lookupMap(1,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds? mesh_FEasCP = lookupMap(2,lower) return elseif (lookupMap(1,upper) == myID) then mesh_FEasCP = lookupMap(2,upper) return endif binarySearch: do while (upper-lower > 1) center = (lower+upper)/2 if (lookupMap(1,center) < myID) then lower = center elseif (lookupMap(1,center) > myID) then upper = center else mesh_FEasCP = lookupMap(2,center) exit endif enddo binarySearch end function mesh_FEasCP !-------------------------------------------------------------------------------------------------- !> @brief return integer list corresponding to items in consecutive lines. !! First integer in array is counter !> @details ints concatenated by "c" as last char, range of a "to" b, or named set !-------------------------------------------------------------------------------------------------- function continuousIntValues(fileContent,maxN,lookupName,lookupMap,lookupMaxN) character(len=*), dimension(:), intent(in) :: fileContent !< file content, separated per lines integer, intent(in) :: maxN integer, intent(in) :: lookupMaxN integer, dimension(:,:), intent(in) :: lookupMap character(len=*), dimension(:), intent(in) :: lookupName integer, dimension(1+maxN) :: continuousIntValues integer :: l,i,first,last integer, allocatable, dimension(:) :: chunkPos logical :: rangeGeneration continuousIntValues = 0 rangeGeneration = .false. do l = 1, size(fileContent) chunkPos = IO_stringPos(fileContent(l)) if (chunkPos(1) < 1) then ! empty line exit elseif (verify(IO_stringValue(fileContent(l),chunkPos,1),'0123456789') > 0) then ! a non-int, i.e. set name do i = 1, lookupMaxN ! loop over known set names if (IO_stringValue(fileContent(l),chunkPos,1) == lookupName(i)) then ! found matching name continuousIntValues = lookupMap(:,i) ! return resp. entity list exit endif enddo exit else if (chunkPos(1) > 2 .and. IO_lc(IO_stringValue(fileContent(l),chunkPos,2)) == 'to' ) then ! found range indicator first = IO_intValue(fileContent(l),chunkPos,1) last = IO_intValue(fileContent(l),chunkPos,3) do i = first, last, sign(1,last-first) continuousIntValues(1) = continuousIntValues(1) + 1 continuousIntValues(1+continuousIntValues(1)) = i enddo exit else do i = 1,chunkPos(1)-1 ! interpret up to second to last value continuousIntValues(1) = continuousIntValues(1) + 1 continuousIntValues(1+continuousIntValues(1)) = IO_intValue(fileContent(l),chunkPos,i) enddo if ( IO_lc(IO_stringValue(fileContent(l),chunkPos,chunkPos(1))) /= 'c' ) then ! line finished, read last value continuousIntValues(1) = continuousIntValues(1) + 1 continuousIntValues(1+continuousIntValues(1)) = IO_intValue(fileContent(l),chunkPos,chunkPos(1)) exit endif endif enddo end function continuousIntValues end module mesh