!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author David Cereceda, Lawrence Livermore National Laboratory !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incoprorating dislocation and twinning physics !> @details to be done !-------------------------------------------------------------------------------------------------- module plastic_disloUCLA use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & plastic_disloUCLA_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & plastic_disloUCLA_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & plastic_disloUCLA_output !< name of each post result output real(pReal), parameter, private :: & kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin integer(pInt), dimension(:), allocatable, target, public :: & plastic_disloUCLA_Noutput !< number of outputs per instance of this plasticity integer(pInt), dimension(:), allocatable, private :: & plastic_disloUCLA_totalNslip !< total number of active slip systems for each instance integer(pInt), dimension(:,:), allocatable, private :: & plastic_disloUCLA_Nslip !< number of active slip systems for each family and instance real(pReal), dimension(:), allocatable, private :: & plastic_disloUCLA_CAtomicVolume, & !< atomic volume in Bugers vector unit plastic_disloUCLA_D0, & !< prefactor for self-diffusion coefficient plastic_disloUCLA_Qsd, & !< activation energy for dislocation climb plastic_disloUCLA_GrainSize, & !< grain size plastic_disloUCLA_CEdgeDipMinDistance, & !< plastic_disloUCLA_SolidSolutionStrength, & !< Strength due to elements in solid solution plastic_disloUCLA_dipoleFormationFactor, & !< scaling factor for dipole formation: 0: off, 1: on. other values not useful plastic_disloUCLA_aTolRho !< absolute tolerance for integration of dislocation density real(pReal), dimension(:,:), allocatable, private :: & plastic_disloUCLA_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance plastic_disloUCLA_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance plastic_disloUCLA_burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each slip family and instance plastic_disloUCLA_burgersPerSlipSystem, & !< absolute length of burgers vector [m] for each slip system and instance plastic_disloUCLA_QedgePerSlipFamily, & !< activation energy for glide [J] for each slip family and instance plastic_disloUCLA_QedgePerSlipSystem, & !< activation energy for glide [J] for each slip system and instance plastic_disloUCLA_v0PerSlipFamily, & !< dislocation velocity prefactor [m/s] for each family and instance plastic_disloUCLA_v0PerSlipSystem, & !< dislocation velocity prefactor [m/s] for each slip system and instance plastic_disloUCLA_tau_peierlsPerSlipFamily, & !< Peierls stress [Pa] for each family and instance plastic_disloUCLA_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance plastic_disloUCLA_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance plastic_disloUCLA_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance plastic_disloUCLA_pPerSlipFamily, & !< p-exponent in glide velocity plastic_disloUCLA_qPerSlipFamily, & !< q-exponent in glide velocity !* mobility law parameters plastic_disloUCLA_kinkheight, & !< height of the kink pair plastic_disloUCLA_omega, & !< attempt frequency for kink pair nucleation plastic_disloUCLA_kinkwidth, & !< width of the kink pair plastic_disloUCLA_dislolength, & !< dislocation length (lamda) plastic_disloUCLA_friction, & !< friction coeff. B (kMC) !* plastic_disloUCLA_nonSchmidCoeff !< non-Schmid coefficients (bcc) real(pReal), dimension(:,:,:), allocatable, private :: & plastic_disloUCLA_interactionMatrix_SlipSlip, & !< interaction matrix of the different slip systems for each instance plastic_disloUCLA_forestProjectionEdge !< matrix of forest projections of edge dislocations for each instance enum, bind(c) enumerator :: undefined_ID, & edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & plastic_disloUCLA_outputID !< ID of each post result output type, private :: tDisloUCLAState real(pReal), pointer, dimension(:,:) :: & rhoEdge, & rhoEdgeDip, & accshear_slip, & invLambdaSlip, & mfp_slip, & threshold_stress_slip end type type(tDisloUCLAState ), allocatable, dimension(:), private :: & state, & state0, & dotState public :: & plastic_disloUCLA_init, & plastic_disloUCLA_microstructure, & plastic_disloUCLA_LpAndItsTangent, & plastic_disloUCLA_dotState, & plastic_disloUCLA_postResults private :: & plastic_disloUCLA_stateInit, & plastic_disloUCLA_aTolState contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_init(fileUnit) #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use debug, only: & debug_level,& debug_constitutive,& debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333, & math_mul3x3 use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_DISLOUCLA_label, & PLASTICITY_DISLOUCLA_ID, & material_phase, & plasticState use config, only: & MATERIAL_partPhase use lattice use numerics,only: & numerics_integrator implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,& f,instance,j,k,o,ns, & Nchunks_SlipSlip = 0_pInt, & Nchunks_SlipFamilies = 0_pInt,Nchunks_nonSchmid = 0_pInt, & offset_slip, index_myFamily, index_otherFamily, & startIndex, endIndex integer(pInt) :: sizeState, sizeDotState, sizeDeltaState integer(pInt) :: NofMyPhase character(len=65536) :: & tag = '', & line = '' real(pReal), dimension(:), allocatable :: tempPerSlip write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOUCLA_label//' init -+>>>' write(6,'(/,a)') ' Cereceda et al., International Journal of Plasticity 78, 2016, 242-256' write(6,'(/,a)') ' http://dx.doi.org/10.1016/j.ijplas.2015.09.002' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == PLASTICITY_DISLOUCLA_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(plastic_disloUCLA_sizePostResults(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt) allocate(plastic_disloUCLA_output(maxval(phase_Noutput),maxNinstance)) plastic_disloUCLA_output = '' allocate(plastic_disloUCLA_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID) allocate(plastic_disloUCLA_Noutput(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_totalNslip(maxNinstance), source=0_pInt) allocate(plastic_disloUCLA_CAtomicVolume(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_D0(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_Qsd(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_GrainSize(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_CEdgeDipMinDistance(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_SolidSolutionStrength(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_aTolRho(maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_dipoleFormationFactor(maxNinstance), source=1.0_pReal) !should be on by default allocate(plastic_disloUCLA_rhoEdge0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_kinkheight(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_omega(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_kinkwidth(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_dislolength(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_friction(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_tau_peierlsPerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(plastic_disloUCLA_pPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_qPerSlipFamily(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(plastic_disloUCLA_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_nonSchmidCoeff(lattice_maxNnonSchmid,maxNinstance), source=0.0_pReal) rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next phase section phase = phase + 1_pInt ! advance phase section counter if (phase_plasticity(phase) == PLASTICITY_DISLOUCLA_ID) then Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt) Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase)) Nchunks_nonSchmid = lattice_NnonSchmid(phase) if(allocated(tempPerSlip)) deallocate(tempPerSlip) allocate(tempPerSlip(Nchunks_SlipFamilies)) endif cycle ! skip to next line endif if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_DISLOUCLA_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt))) case ('edge_density') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = edge_density_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('dipole_density') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = dipole_density_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('shear_rate_slip','shearrate_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = shear_rate_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('accumulated_shear_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = accumulated_shear_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('mfp_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = mfp_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('resolved_stress_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = resolved_stress_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('threshold_stress_slip') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = threshold_stress_slip_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('edge_dipole_distance') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = edge_dipole_distance_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) case ('stress_exponent') plastic_disloUCLA_Noutput(instance) = plastic_disloUCLA_Noutput(instance) + 1_pInt plastic_disloUCLA_outputID(plastic_disloUCLA_Noutput(instance),instance) = stress_exponent_ID plastic_disloUCLA_output(plastic_disloUCLA_Noutput(instance),instance) = & IO_lc(IO_stringValue(line,chunkPos,2_pInt)) end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of slip system families case ('nslip') if (chunkPos(1) < Nchunks_SlipFamilies + 1_pInt) & call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') if (chunkPos(1) > Nchunks_SlipFamilies + 1_pInt) & call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') Nchunks_SlipFamilies = chunkPos(1) - 1_pInt do j = 1_pInt, Nchunks_SlipFamilies plastic_disloUCLA_Nslip(j,instance) = IO_intValue(line,chunkPos,1_pInt+j) enddo case ('rhoedge0','rhoedgedip0','slipburgers','qedge','v0','clambdaslip','tau_peierls','p_slip','q_slip',& 'kink_height','omega','kink_width','dislolength','friction_coeff') do j = 1_pInt, Nchunks_SlipFamilies tempPerSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j) enddo select case(tag) case ('rhoedge0') plastic_disloUCLA_rhoEdge0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('rhoedgedip0') plastic_disloUCLA_rhoEdgeDip0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('slipburgers') plastic_disloUCLA_burgersPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('qedge') plastic_disloUCLA_QedgePerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('v0') plastic_disloUCLA_v0PerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('clambdaslip') plastic_disloUCLA_CLambdaSlipPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('tau_peierls') if (lattice_structure(phase) /= LATTICE_bcc_ID) & call IO_warning(42_pInt,ext_msg=trim(tag)//' for non-bcc ('//PLASTICITY_DISLOUCLA_label//')') plastic_disloUCLA_tau_peierlsPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('p_slip') plastic_disloUCLA_pPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('q_slip') plastic_disloUCLA_qPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies) case ('kink_height') plastic_disloUCLA_kinkheight(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('omega') plastic_disloUCLA_omega(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('kink_width') plastic_disloUCLA_kinkwidth(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('dislolength') plastic_disloUCLA_dislolength(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) case ('friction_coeff') plastic_disloUCLA_friction(1:Nchunks_SlipFamilies,instance) = & tempPerSlip(1:Nchunks_SlipFamilies) end select !-------------------------------------------------------------------------------------------------- ! parameters depending on number of interactions case ('interaction_slipslip','interactionslipslip') if (chunkPos(1) < 1_pInt + Nchunks_SlipSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt, Nchunks_SlipSlip plastic_disloUCLA_interaction_SlipSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo case ('nonschmid_coefficients') if (chunkPos(1) < 1_pInt + Nchunks_nonSchmid) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOUCLA_label//')') do j = 1_pInt,Nchunks_nonSchmid plastic_disloUCLA_nonSchmidCoeff(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j) enddo !-------------------------------------------------------------------------------------------------- ! parameters independent of number of slip systems case ('grainsize') plastic_disloUCLA_GrainSize(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('d0') plastic_disloUCLA_D0(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('qsd') plastic_disloUCLA_Qsd(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('atol_rho') plastic_disloUCLA_aTolRho(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('solidsolutionstrength') plastic_disloUCLA_SolidSolutionStrength(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('cedgedipmindistance') plastic_disloUCLA_CEdgeDipMinDistance(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('catomicvolume') plastic_disloUCLA_CAtomicVolume(instance) = IO_floatValue(line,chunkPos,2_pInt) case ('dipoleformationfactor') plastic_disloUCLA_dipoleFormationFactor(instance) = IO_floatValue(line,chunkPos,2_pInt) end select endif; endif enddo parsingFile sanityChecks: do phase = 1_pInt, size(phase_plasticity) myPhase: if (phase_plasticity(phase) == PLASTICITY_disloUCLA_ID) then instance = phase_plasticityInstance(phase) if (sum(plastic_disloUCLA_Nslip(:,instance)) < 0_pInt) & call IO_error(211_pInt,el=instance,ext_msg='Nslip ('//PLASTICITY_DISLOUCLA_label//')') do f = 1_pInt,lattice_maxNslipFamily if (plastic_disloUCLA_Nslip(f,instance) > 0_pInt) then if (plastic_disloUCLA_rhoEdge0(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_rhoEdgeDip0(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_burgersPerSlipFamily(f,instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='slipBurgers ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_v0PerSlipFamily(f,instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='v0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance) < 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='tau_peierls ('//PLASTICITY_DISLOUCLA_label//')') endif enddo if (plastic_disloUCLA_CAtomicVolume(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_D0(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='D0 ('//PLASTICITY_DISLOUCLA_label//')') if (plastic_disloUCLA_Qsd(instance) <= 0.0_pReal) & call IO_error(211_pInt,el=instance,ext_msg='Qsd ('//PLASTICITY_DISLOUCLA_label//')') ! if (plastic_disloUCLA_aTolRho(instance) <= 0.0_pReal) & ! call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOUCLA_label//')') !-------------------------------------------------------------------------------------------------- ! Determine total number of active slip systems plastic_disloUCLA_Nslip(:,instance) = min(lattice_NslipSystem(:,phase),plastic_disloUCLA_Nslip(:,instance)) plastic_disloUCLA_totalNslip(instance) = sum(plastic_disloUCLA_Nslip(:,instance)) endif myPhase enddo sanityChecks !-------------------------------------------------------------------------------------------------- ! allocation of variables whose size depends on the total number of active slip systems maxTotalNslip = maxval(plastic_disloUCLA_totalNslip) allocate(plastic_disloUCLA_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_QedgePerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_v0PerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal) allocate(plastic_disloUCLA_interactionMatrix_SlipSlip(maxval(plastic_disloUCLA_totalNslip),& ! slip resistance from slip activity maxval(plastic_disloUCLA_totalNslip),& maxNinstance), source=0.0_pReal) allocate(plastic_disloUCLA_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance), & source=0.0_pReal) allocate(state(maxNinstance)) allocate(state0(maxNinstance)) allocate(dotState(maxNinstance)) initializeInstances: do phase = 1_pInt, size(phase_plasticity) myPhase2: if (phase_plasticity(phase) == PLASTICITY_disloUCLA_ID) then NofMyPhase=count(material_phase==phase) instance = phase_plasticityInstance(phase) ns = plastic_disloUCLA_totalNslip(instance) !-------------------------------------------------------------------------------------------------- ! Determine size of postResults array outputs: do o = 1_pInt,plastic_disloUCLA_Noutput(instance) select case(plastic_disloUCLA_outputID(o,instance)) case(edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID & ) mySize = ns end select if (mySize > 0_pInt) then ! any meaningful output found plastic_disloUCLA_sizePostResult(o,instance) = mySize plastic_disloUCLA_sizePostResults(instance) = plastic_disloUCLA_sizePostResults(instance) + mySize endif enddo outputs !-------------------------------------------------------------------------------------------------- ! allocate state arrays sizeDotState = int(size(['rhoEdge ','rhoEdgeDip ','accshearslip']),pInt) * ns sizeDeltaState = 0_pInt sizeState = sizeDotState & + int(size(['invLambdaSlip ',& 'meanFreePathSlip ','tauSlipThreshold ']),pInt) * ns plasticState(phase)%sizeState = sizeState plasticState(phase)%sizeDotState = sizeDotState plasticState(phase)%sizeDeltaState = sizeDeltaState plasticState(phase)%sizePostResults = plastic_disloUCLA_sizePostResults(instance) plasticState(phase)%nSlip = plastic_disloucla_totalNslip(instance) plasticState(phase)%nTwin = 0_pInt plasticState(phase)%nTrans= 0_pInt allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal) allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 1_pInt)) then allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal) allocate(plasticState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal) endif if (any(numerics_integrator == 4_pInt)) & allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal) if (any(numerics_integrator == 5_pInt)) & allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal) offset_slip = 2_pInt*plasticState(phase)%nSlip plasticState(phase)%slipRate => & plasticState(phase)%dotState(offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NofMyPhase) plasticState(phase)%accumulatedSlip => & plasticState(phase)%state (offset_slip+1:offset_slip+plasticState(phase)%nSlip,1:NofMyPhase) !* Process slip related parameters ------------------------------------------------ mySlipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(plastic_disloUCLA_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list mySlipSystems: do j = 1_pInt,plastic_disloUCLA_Nslip(f,instance) !* Burgers vector, ! dislocation velocity prefactor, ! mean free path prefactor, ! and minimum dipole distance plastic_disloUCLA_burgersPerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_burgersPerSlipFamily(f,instance) plastic_disloUCLA_QedgePerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_QedgePerSlipFamily(f,instance) plastic_disloUCLA_v0PerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_v0PerSlipFamily(f,instance) plastic_disloUCLA_CLambdaSlipPerSlipSystem(index_myFamily+j,instance) = & plastic_disloUCLA_CLambdaSlipPerSlipFamily(f,instance) !* Calculation of forest projections for edge dislocations !* Interaction matrices otherSlipFamilies: do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(plastic_disloUCLA_Nslip(1:o-1_pInt,instance)) otherSlipSystems: do k = 1_pInt,plastic_disloUCLA_Nslip(o,instance) plastic_disloUCLA_forestProjectionEdge(index_myFamily+j,index_otherFamily+k,instance) = & abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,phase))+j,phase), & lattice_st(:,sum(lattice_NslipSystem(1:o-1,phase))+k,phase))) plastic_disloUCLA_interactionMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = & plastic_disloUCLA_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,phase))+j, & sum(lattice_NslipSystem(1:o-1,phase))+k, & phase), instance ) enddo otherSlipSystems; enddo otherSlipFamilies enddo mySlipSystems enddo mySlipFamilies startIndex=1_pInt endIndex=ns state(instance)%rhoEdge=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%rhoEdge=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%rhoEdge=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%rhoEdgeDip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%rhoEdgeDip=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%rhoEdgeDip=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%accshear_slip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%accshear_slip=>plasticState(phase)%state0(startIndex:endIndex,:) dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%invLambdaSlip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%invLambdaSlip=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%mfp_slip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%mfp_slip=>plasticState(phase)%state0(startIndex:endIndex,:) startIndex=endIndex+1_pInt endIndex=endIndex+ns state(instance)%threshold_stress_slip=>plasticState(phase)%state(startIndex:endIndex,:) state0(instance)%threshold_stress_slip=>plasticState(phase)%state0(startIndex:endIndex,:) call plastic_disloUCLA_stateInit(phase,instance) call plastic_disloUCLA_aTolState(phase,instance) endif myPhase2 enddo initializeInstances end subroutine plastic_disloUCLA_init !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_stateInit(ph,instance) use math, only: & pi use lattice, only: & lattice_maxNslipFamily, & lattice_mu use material, only: & plasticState implicit none integer(pInt), intent(in) :: & instance, & !< number specifying the instance of the plasticity ph real(pReal), dimension(plasticState(ph)%sizeState) :: tempState integer(pInt) :: i,f,ns, index_myFamily real(pReal), dimension(plastic_disloUCLA_totalNslip(instance)) :: & rhoEdge0, & rhoEdgeDip0, & invLambdaSlip0, & MeanFreePathSlip0, & tauSlipThreshold0 tempState = 0.0_pReal ns = plastic_disloUCLA_totalNslip(instance) !-------------------------------------------------------------------------------------------------- ! initialize basic slip state variables do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(plastic_disloUCLA_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list rhoEdge0(index_myFamily+1_pInt: & index_myFamily+plastic_disloUCLA_Nslip(f,instance)) = & plastic_disloUCLA_rhoEdge0(f,instance) rhoEdgeDip0(index_myFamily+1_pInt: & index_myFamily+plastic_disloUCLA_Nslip(f,instance)) = & plastic_disloUCLA_rhoEdgeDip0(f,instance) enddo tempState(1_pInt:ns) = rhoEdge0 tempState(ns+1_pInt:2_pInt*ns) = rhoEdgeDip0 !-------------------------------------------------------------------------------------------------- ! initialize dependent slip microstructural variables forall (i = 1_pInt:ns) & invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloUCLA_forestProjectionEdge(1:ns,i,instance)))/ & plastic_disloUCLA_CLambdaSlipPerSlipSystem(i,instance) tempState(3_pInt*ns+1:4_pInt*ns) = invLambdaSlip0 forall (i = 1_pInt:ns) & MeanFreePathSlip0(i) = & plastic_disloUCLA_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*plastic_disloUCLA_GrainSize(instance)) tempState(4_pInt*ns+1:5_pInt*ns) = MeanFreePathSlip0 forall (i = 1_pInt:ns) & tauSlipThreshold0(i) = & lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(i,instance) * & sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_disloUCLA_interactionMatrix_SlipSlip(i,1:ns,instance))) tempState(5_pInt*ns+1:6_pInt*ns) = tauSlipThreshold0 plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:))) end subroutine plastic_disloUCLA_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_aTolState(ph,instance) use material, only: & plasticState implicit none integer(pInt), intent(in) :: & ph, & instance ! number specifying the current instance of the plasticity ! Tolerance state for dislocation densities plasticState(ph)%aTolState(1_pInt:2_pInt*plastic_disloUCLA_totalNslip(instance)) = & plastic_disloUCLA_aTolRho(instance) ! Tolerance state for accumulated shear due to slip plasticState(ph)%aTolState(2_pInt*plastic_disloUCLA_totalNslip(instance)+1_pInt: & 3_pInt*plastic_disloUCLA_totalNslip(instance))=1e6_pReal end subroutine plastic_disloUCLA_aTolState !-------------------------------------------------------------------------------------------------- !> @brief calculates derived quantities from state !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_microstructure(temperature,ipc,ip,el) use math, only: & pi use material, only: & phase_plasticityInstance, & phaseAt, phasememberAt use lattice, only: & lattice_mu implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), intent(in) :: & temperature !< temperature at IP integer(pInt) :: & instance, & ns,s, & ph, & of !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation forall (s = 1_pInt:ns) & state(instance)%invLambdaSlip(s,of) = & sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),& plastic_disloUCLA_forestProjectionEdge(1:ns,s,instance)))/ & plastic_disloUCLA_CLambdaSlipPerSlipSystem(s,instance) !* mean free path between 2 obstacles seen by a moving dislocation do s = 1_pInt,ns state(instance)%mfp_slip(s,of) = & plastic_disloUCLA_GrainSize(instance)/& (1.0_pReal+plastic_disloUCLA_GrainSize(instance)*(state(instance)%invLambdaSlip(s,of))) enddo !* threshold stress for dislocation motion forall (s = 1_pInt:ns) & state(instance)%threshold_stress_slip(s,of) = & lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(s,instance)*& sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),& plastic_disloUCLA_interactionMatrix_SlipSlip(s,1:ns,instance))) end subroutine plastic_disloUCLA_microstructure !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check use math, only: & math_Plain3333to99, & math_Mandel6to33, & math_Mandel33to6, & math_symmetric33, & math_mul33x3 use material, only: & material_phase, & phase_plasticityInstance, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_maxNslipFamily,& lattice_NslipSystem, & lattice_NnonSchmid implicit none integer(pInt), intent(in) :: ipc,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 integer(pInt) :: instance,ph,of,ns,f,i,j,k,l,m,n,index_myFamily real(pReal) :: StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0, & tau_slip_pos,tau_slip_neg,vel_slip,dvel_slip,& dgdot_dtauslip_pos,dgdot_dtauslip_neg,stressRatio real(pReal), dimension(3,3,2) :: & nonSchmid_tensor real(pReal), dimension(3,3,3,3) :: & dLp_dTstar3333 real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,gdot_slip_neg !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! Dislocation glide part gdot_slip_pos = 0.0_pReal gdot_slip_neg = 0.0_pReal dgdot_dtauslip_pos = 0.0_pReal dgdot_dtauslip_neg = 0.0_pReal j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j+1_pInt !* Boltzmann ratio BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*& plastic_disloUCLA_v0PerSlipSystem(j,instance) !* Resolved shear stress on slip system tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,ph)) tau_slip_neg = tau_slip_pos nonSchmid_tensor(1:3,1:3,1) = lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1) nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k, index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + plastic_disloUCLA_nonSchmidCoeff(k,instance)*& lattice_Sslip(1:3,1:3,2*k, index_myFamily+i,ph) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + plastic_disloUCLA_nonSchmidCoeff(k,instance)*& lattice_Sslip(1:3,1:3,2*k+1,index_myFamily+i,ph) enddo nonSchmidSystems significantPostitiveStress: if((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then !* Stress ratio stressRatio = ((abs(tau_slip_pos)-state(instance)%threshold_stress_slip(j,of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_pos & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_pos(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_pos) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_pos & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_pos & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_pos = DotGamma0 * dvel_slip endif significantPostitiveStress significantNegativeStress: if((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then !* Stress ratio stressRatio = ((abs(tau_slip_neg)-state(instance)%threshold_stress_slip(j,of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_neg & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_neg(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_neg) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_neg & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_neg & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_neg = DotGamma0 * dvel_slip endif significantNegativeStress !* Plastic velocity gradient for dislocation glide Lp = Lp + (gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal*lattice_Sslip(1:3,1:3,1,index_myFamily+i,ph) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + (dgdot_dtauslip_pos*nonSchmid_tensor(m,n,1)+& dgdot_dtauslip_neg*nonSchmid_tensor(m,n,2))*0.5_pReal*& lattice_Sslip(k,l,1,index_myFamily+i,ph) enddo slipSystems enddo slipFamilies dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333) end subroutine plastic_disloUCLA_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- subroutine plastic_disloUCLA_dotState(Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check, & dEq0 use math, only: & pi use material, only: & material_phase, & phase_plasticityInstance, & plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip_v, & lattice_maxNslipFamily, & lattice_NslipSystem, & lattice_NnonSchmid, & lattice_mu implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element integer(pInt) :: instance,ns,f,i,j,k,index_myFamily, & ph, & of real(pReal) :: & stressRatio_p,& BoltzmannRatio,& DotGamma0,& stressRatio, & EdgeDipMinDistance,& AtomicVolume,& VacancyDiffusion,& DotRhoMultiplication,& EdgeDipDistance, & DotRhoEdgeDipAnnihilation, & DotRhoEdgeEdgeAnnihilation, & ClimbVelocity, & DotRhoEdgeDipClimb, & DotRhoDipFormation, & vel_slip, & gdot_slip real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos, gdot_slip_neg,& tau_slip_pos,& tau_slip_neg, & dgdot_dtauslip_neg,dgdot_dtauslip_pos !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) plasticState(ph)%dotState(:,of) = 0.0_pReal !* Dislocation density evolution call kinetics(Tstar_v,Temperature,ipc,ip,el, & gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg) j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j+1_pInt !* Boltzmann ratio BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*& plastic_disloUCLA_v0PerSlipSystem(j,instance) gdot_slip = (gdot_slip_pos(j)+gdot_slip_neg(j))*0.5_pReal !* Multiplication DotRhoMultiplication = abs(gdot_slip)/& (plastic_disloUCLA_burgersPerSlipSystem(j,instance)* & state(instance)%mfp_slip(j,of)) !* Dipole formation EdgeDipMinDistance = & plastic_disloUCLA_CEdgeDipMinDistance(instance)*plastic_disloUCLA_burgersPerSlipSystem(j,instance) if (dEq0(tau_slip_pos(j))) then DotRhoDipFormation = 0.0_pReal else EdgeDipDistance = & (3.0_pReal*lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))/& (16.0_pReal*pi*abs(tau_slip_pos(j))) if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of) if (EdgeDipDistance @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function plastic_disloUCLA_postResults(Tstar_v,Temperature,ipc,ip,el) use prec, only: & tol_math_check, & dEq, dNeq0 use math, only: & pi use material, only: & material_phase, & phase_plasticityInstance,& !plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip_v, & lattice_maxNslipFamily, & lattice_NslipSystem, & lattice_NnonSchmid, & lattice_mu implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(plastic_disloUCLA_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & plastic_disloUCLA_postResults integer(pInt) :: & instance,& ns,& f,o,i,c,j,k,index_myFamily,& ph, & of real(pReal) :: StressRatio_p,StressRatio_pminus1,& BoltzmannRatio,DotGamma0,stressRatio,& dvel_slip, vel_slip real(pReal), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) !* Required output c = 0_pInt plastic_disloUCLA_postResults = 0.0_pReal do o = 1_pInt,plastic_disloUCLA_Noutput(instance) select case(plastic_disloUCLA_outputID(o,instance)) case (edge_density_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdge(1_pInt:ns,of) c = c + ns case (dipole_density_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdgeDip(1_pInt:ns,of) c = c + ns case (shear_rate_slip_ID,stress_exponent_ID) call kinetics(Tstar_v,Temperature,ipc,ip,el, & gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg) if (plastic_disloUCLA_outputID(o,instance) == shear_rate_slip_ID) then plastic_disloUCLA_postResults(c+1:c+ns) = (gdot_slip_pos + gdot_slip_neg)*0.5_pReal c = c + ns elseif(plastic_disloUCLA_outputID(o,instance) == stress_exponent_ID) then do j = 1_pInt, ns if (dEq(gdot_slip_pos(j)+gdot_slip_neg(j),0.0_pReal)) then plastic_disloUCLA_postResults(c+j) = 0.0_pReal else plastic_disloUCLA_postResults(c+j) = (tau_slip_pos(j)+tau_slip_neg(j))/& (gdot_slip_pos(j)+gdot_slip_neg(j))*& (dgdot_dtauslip_pos(j)+dgdot_dtauslip_neg(j))* 0.5_pReal endif enddo c = c + ns endif case (accumulated_shear_slip_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = & state(instance)%accshear_slip(1_pInt:ns, of) c = c + ns case (mfp_slip_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) =& state(instance)%mfp_slip(1_pInt:ns, of) c = c + ns case (resolved_stress_slip_ID) j = 0_pInt slipFamilies1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems1: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j + 1_pInt plastic_disloUCLA_postResults(c+j) =& dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph)) enddo slipSystems1; enddo slipFamilies1 c = c + ns case (threshold_stress_slip_ID) plastic_disloUCLA_postResults(c+1_pInt:c+ns) = & state(instance)%threshold_stress_slip(1_pInt:ns,of) c = c + ns case (edge_dipole_distance_ID) j = 0_pInt slipFamilies2: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems2: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j + 1_pInt if (dNeq0(abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))) then plastic_disloUCLA_postResults(c+j) = & (3.0_pReal*lattice_mu(ph)*plastic_disloUCLA_burgersPerSlipSystem(j,instance))/& (16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph)))) else plastic_disloUCLA_postResults(c+j) = huge(1.0_pReal) endif plastic_disloUCLA_postResults(c+j)=min(plastic_disloUCLA_postResults(c+j),& state(instance)%mfp_slip(j,of)) enddo slipSystems2; enddo slipFamilies2 c = c + ns end select enddo end function plastic_disloUCLA_postResults !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- subroutine kinetics(Tstar_v,Temperature,ipc,ip,el, & gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg) use prec, only: & tol_math_check, & dEq, dNeq0 use math, only: & pi use material, only: & material_phase, & phase_plasticityInstance,& !plasticState, & phaseAt, phasememberAt use lattice, only: & lattice_Sslip_v, & lattice_maxNslipFamily, & lattice_NslipSystem, & lattice_NnonSchmid, & lattice_mu implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), dimension(plastic_disloUCLA_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & plastic_disloUCLA_postResults integer(pInt) :: & instance,& ns,& f,o,i,c,j,k,index_myFamily,& ph, & of real(pReal) :: StressRatio_p,StressRatio_pminus1,& BoltzmannRatio,DotGamma0,stressRatio,& dvel_slip, vel_slip real(pReal), intent(out), dimension(plastic_disloUCLA_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,dgdot_dtauslip_pos,tau_slip_pos,gdot_slip_neg,dgdot_dtauslip_neg,tau_slip_neg !* Shortened notation of = phasememberAt(ipc,ip,el) ph = phaseAt(ipc,ip,el) instance = phase_plasticityInstance(ph) ns = plastic_disloUCLA_totalNslip(instance) gdot_slip_pos = 0.0_pReal gdot_slip_neg = 0.0_pReal dgdot_dtauslip_pos = 0.0_pReal dgdot_dtauslip_neg = 0.0_pReal j = 0_pInt slipFamilies: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family slipSystems: do i = 1_pInt,plastic_disloUCLA_Nslip(f,instance) j = j + 1_pInt !* Boltzmann ratio BoltzmannRatio = plastic_disloUCLA_QedgePerSlipSystem(j,instance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(instance)%rhoEdge(j,of)*plastic_disloUCLA_burgersPerSlipSystem(j,instance)*& plastic_disloUCLA_v0PerSlipSystem(j,instance) !* Resolved shear stress on slip system tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph)) tau_slip_neg(j) = tau_slip_pos(j) nonSchmidSystems: do k = 1,lattice_NnonSchmid(ph) tau_slip_pos = tau_slip_pos + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,ph)) tau_slip_neg = tau_slip_neg + plastic_disloUCLA_nonSchmidCoeff(k,instance)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,ph)) enddo nonSchmidSystems significantPositiveTau: if((abs(tau_slip_pos(j))-state(instance)%threshold_stress_slip(j, of)) > tol_math_check) then !* Stress ratio stressRatio = ((abs(tau_slip_pos(j))-state(instance)%threshold_stress_slip(j, of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_pos(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_pos(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_pos(j)) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_pos(j) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_pos(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_pos(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_pos(j) = DotGamma0 * dvel_slip endif significantPositiveTau significantNegativeTau: if((abs(tau_slip_neg(j))-state(instance)%threshold_stress_slip(j, of)) > tol_math_check) then !* Stress ratios stressRatio = ((abs(tau_slip_neg(j))-state(instance)%threshold_stress_slip(j, of))/& (plastic_disloUCLA_SolidSolutionStrength(instance)+& plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))) stressRatio_p = stressRatio** plastic_disloUCLA_pPerSlipFamily(f,instance) stressRatio_pminus1 = stressRatio**(plastic_disloUCLA_pPerSlipFamily(f,instance)-1.0_pReal) !* Shear rates due to slip vel_slip = 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * (tau_slip_neg(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & / ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) gdot_slip_neg(j) = DotGamma0 & * vel_slip & * sign(1.0_pReal,tau_slip_neg(j)) !* Derivatives of shear rates dvel_slip = & 2.0_pReal*plastic_disloUCLA_burgersPerSlipFamily(f,instance) & * plastic_disloUCLA_kinkheight(f,instance) * plastic_disloUCLA_omega(f,instance) & * ( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) ) & * ( & (exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & + tau_slip_neg(j) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) ) &!deltaf(f) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & ) & - (tau_slip_neg(j) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) ) & * (2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * (abs(exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)))& !deltaf(i) *BoltzmannRatio*plastic_disloUCLA_pPerSlipFamily(f,instance)& *plastic_disloUCLA_qPerSlipFamily(f,instance)/& (plastic_disloUCLA_SolidSolutionStrength(instance)+plastic_disloUCLA_tau_peierlsPerSlipFamily(f,instance))*& StressRatio_pminus1*(1-StressRatio_p)**(plastic_disloUCLA_qPerSlipFamily(f,instance)-1.0_pReal) )& !deltaf(f) ) & ) & / ( & ( & 2.0_pReal*(plastic_disloUCLA_burgersPerSlipFamily(f,instance)**2.0_pReal)*tau_slip_neg(j) & + plastic_disloUCLA_omega(f,instance) * plastic_disloUCLA_friction(f,instance) & *(( state(instance)%mfp_slip(j,of) - plastic_disloUCLA_kinkwidth(f,instance) )**2.0_pReal) & * exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_disloUCLA_qPerSlipFamily(f,instance)) & )**2.0_pReal & ) dgdot_dtauslip_neg(j) = DotGamma0 * dvel_slip endif significantNegativeTau enddo slipSystems enddo slipFamilies end subroutine kinetics end module plastic_disloUCLA