#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,math,string import numpy as np from collections import defaultdict from optparse import OptionParser import damask scriptID = '$Id$' scriptName = scriptID.split()[1] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add column(s) containing Cauchy stress based on given column(s) of deformation gradient and first Piola--Kirchhoff stress. """, version = string.replace(scriptID,'\n','\\n') ) parser.add_option('-f','--defgrad', dest='defgrad', type='string', metavar='string', \ help='heading of columns containing deformation gradient [%default]') parser.add_option('-p','--stress', dest='stress', type='string', metavar='string', \ help='heading of columns containing first Piola--Kirchhoff stress [%default]') parser.set_defaults(defgrad = 'f') parser.set_defaults(stress = 'p') (options,filenames) = parser.parse_args() datainfo = { # list of requested labels per datatype 'defgrad': {'len':9, 'label':[]}, 'stress': {'len':9, 'label':[]}, } datainfo['defgrad']['label'].append(options.defgrad) datainfo['stress']['label'].append(options.stress) # ------------------------------------------ setup file handles --------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) # ------------------------------------------ loop over input files --------------------------------------- for file in files: if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n') table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(string.replace(scriptID,'\n','\\n') + '\t' + ' '.join(sys.argv[1:])) active = defaultdict(list) column = defaultdict(dict) missingColumns = False for datatype,info in datainfo.items(): for label in info['label']: key = {True :'1_%s', False:'%s' }[info['len']>1]%label if key not in table.labels: file['croak'].write('column %s not found...\n'%key) missingColumns = True # break if label not found else: active[datatype].append(label) column[datatype][label] = table.labels.index(key) # remember columns of requested data if missingColumns: continue # ------------------------------------------ assemble header ------------------------------------ table.labels_append(['%i_Cauchy'%(i+1) for i in xrange(datainfo['stress']['len'])]) # extend ASCII header with new labels table.head_write() # ------------------------------------------ process data ---------------------------------------- outputAlive = True while outputAlive and table.data_read(): # read next data line of ASCII table F = np.array(map(float,table.data[column['defgrad'][active['defgrad'][0]]: column['defgrad'][active['defgrad'][0]]+datainfo['defgrad']['len']]),'d').reshape(3,3) P = np.array(map(float,table.data[column['stress'][active['stress'][0]]: column['stress'][active['stress'][0]]+datainfo['stress']['len']]),'d').reshape(3,3) table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose] outputAlive = table.data_write() # output processed line # ------------------------------------------ output result --------------------------------------- outputAlive and table.output_flush() # just in case of buffered ASCII table file['input'].close() # close input ASCII table (works for stdin) file['output'].close() # close output ASCII table (works for stdout) if file['name'] != 'STDIN': os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new