#!/usr/bin/python # -*- coding: UTF-8 no BOM -*- import numpy as np from scipy.optimize import curve_fit from scipy.linalg import svd import threading import time def asFullTensor(voigt): return np.array([[voigt[0],voigt[3],voigt[5]],\ [voigt[3],voigt[1],voigt[4]],\ [voigt[5],voigt[4],voigt[2]]]) def Hill48(x, F,G,H,L,M,N): return F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \ 2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1. def vonMises(x, S_y): p = svd(asFullTensor(x)) return (s[2]-s[1])**2+(s[1]-s[0])**2+(s[0]-s[2])**2-2*S_y**2 #--------------------------------------------------------------------------------------------------- class Loadcase(): #--------------------------------------------------------------------------------------------------- ''' Class for generating load cases for the spectral solver ''' # ------------------------------------------------------------------ def __init__(self): print('using the random load case generator') def getNext(self,N=0): defgrad=['*']*9 stress =[0]*9 values=(np.random.random_sample(9)-.5)*scale*2 main=np.array([0,4,8]) np.random.shuffle(main) for i in main[:2]: defgrad[i]=1.+values[i] stress[i]='*' for off in [[1,3,0],[2,6,0],[5,7,0]]: off=np.array(off) np.random.shuffle(off) print off if off[0] != 0: defgrad[off[0]]=values[off[0]] stress[off[0]]='*' return 'f '+' '.join(str(c) for c in defgrad)+\ ' p '+' '.join(str(c) for c in stress)+\ ' incs %s'%incs+\ ' time %s'%duration #--------------------------------------------------------------------------------------------------- class Criterion(object): #--------------------------------------------------------------------------------------------------- ''' Fitting to certain criterion ''' def __init__(self,name): self.name = name.lower() if self.name not in ['hill48','vonmises']: print('Mist') print('using the %s criterion'%self.name) self.popt = 0.0 def fit(self,stress): print len(stress) if self.name == 'hill48': try: self.popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[0])) print self.popt except: pass elif self.name == 'vonmises': try: self.popt, pcov = curve_fit(vonMises, stress.transpose(), np.shape(stress)[0]) except: pass #--------------------------------------------------------------------------------------------------- #--------------------------------------------------------------------------------------------------- ''' Runner class ''' class myThread (threading.Thread): def __init__(self, threadID): threading.Thread.__init__(self) self.threadID = threadID def run(self): s.acquire() conv=converged() s.release() while not conv: doSim(4.,self.name) s.acquire() conv=converged() s.release() def doSim(delay,thread): s.acquire() me=getLoadcase()+1 print('starting sim %i from thread %s'%(me,thread)) f=open('%s.load'%me,'w') f.write(myLoad.getNext(me)) f.close() #dummy voigt = np.random.random_sample(6)*90e6 global stressAll stressAll=np.append(stressAll,asFullTensor(voigt).reshape(1,9)) stressAll=stressAll.reshape(len(stressAll)//9,9) myFit.fit(stressAll) s.release() time.sleep(delay) s.acquire() print('doing postprocessing sim %i from thread %s'%(me,thread)) s.release() def getLoadcase(): global N_simulations N_simulations+=1 return N_simulations def converged(): global N_simulations global maxN_simulations if N_simulations < maxN_simulations: return False else: return True # main minN_simulations=20 maxN_simulations=10 N_simulations=0 s=threading.Semaphore(1) scale = 0.02 incs = 10 duration = 10 stressAll=np.zeros(0,'d') myLoad = Loadcase() myFit = Criterion('Hill48') N_threads=3 t=[] for i in range(N_threads): t.append(myThread(i)) t[i].start() for i in range(N_threads): t[i].join() a, b = curve_fit(Hill48, stressAll.transpose(), np.zeros(10)) print a print "Exiting Main Thread"