!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief phenomenological crystal plasticity formulation using a powerlaw fitting !-------------------------------------------------------------------------------------------------- submodule(phase:plastic) phenopowerlaw type :: tParameters real(pREAL), allocatable, dimension(:) :: & dot_gamma_0_sl, & !< reference shear strain rate for slip dot_gamma_0_tw, & !< reference shear strain rate for twin a_sl, & n_sl, & !< stress exponent for slip n_tw, & !< stress exponent for twin xi_inf_sl, & !< maximum critical shear stress for slip f_sat_sl_tw, & !< push-up factor for slip saturation due to twinning c_1, & c_2, & c_3, & c_4, & h_0_sl_sl, & !< reference hardening slip - slip h_0_tw_sl, & !< reference hardening twin - slip h_0_tw_tw, & !< reference hardening twin - twin gamma_char !< characteristic shear for twins real(pREAL), allocatable, dimension(:,:) :: & h_sl_sl, & !< slip resistance from slip activity h_sl_tw, & !< slip resistance from twin activity h_tw_sl, & !< twin resistance from slip activity h_tw_tw !< twin resistance from twin activity real(pREAL), allocatable, dimension(:,:,:) :: & P_sl, & P_tw, & P_nS_pos, & P_nS_neg integer :: & sum_N_sl, & !< total number of active slip system sum_N_tw !< total number of active twin systems logical :: & nonSchmidActive = .false. character(len=pSTRLEN), allocatable, dimension(:) :: & output character(len=:), allocatable, dimension(:) :: & systems_sl, & systems_tw end type tParameters type :: tIndexDotState integer, dimension(2) :: & xi_sl, & xi_tw, & gamma_sl, & gamma_tw end type tIndexDotState type :: tPhenopowerlawState real(pREAL), pointer, dimension(:,:) :: & xi_sl, & xi_tw, & gamma_sl, & gamma_tw end type tPhenopowerlawState !-------------------------------------------------------------------------------------------------- ! containers for parameters, dot state index, and state type(tParameters), allocatable, dimension(:) :: param type(tIndexDotState), allocatable, dimension(:) :: indexDotState type(tPhenopowerlawState), allocatable, dimension(:) :: state contains !-------------------------------------------------------------------------------------------------- !> @brief Perform module initialization. !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function plastic_phenopowerlaw_init() result(myPlasticity) logical, dimension(:), allocatable :: myPlasticity integer :: & ph, i, & N_fam, & Nmembers, & sizeState, sizeDotState, & startIndex, endIndex integer, dimension(:), allocatable :: & N_sl, & !< number of slip-systems for a given slip family N_tw !< number of twin-systems for a given twin family real(pREAL), dimension(:), allocatable :: & xi_0_sl, & !< initial critical shear stress for slip xi_0_tw, & !< initial critical shear stress for twin a, & !< non-Schmid coefficients ones character(len=:), allocatable :: & refs, & extmsg type(tDict), pointer :: & phases, & phase, & mech, & pl myPlasticity = plastic_active('phenopowerlaw') if (count(myPlasticity) == 0) return print'(/,1x,a)', '<<<+- phase:mechanical:plastic:phenopowerlaw init -+>>>' print'(/,a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT) phases => config_material%get_dict('phase') allocate(param(phases%length)) allocate(indexDotState(phases%length)) allocate(state(phases%length)) extmsg = '' do ph = 1, phases%length if (.not. myPlasticity(ph)) cycle associate(prm => param(ph), stt => state(ph), & idx_dot => indexDotState(ph)) phase => phases%get_dict(ph) mech => phase%get_dict('mechanical') pl => mech%get_dict('plastic') print'(/,1x,a,i0,a)', 'phase ',ph,': '//phases%key(ph) refs = config_listReferences(pl,indent=3) if (len(refs) > 0) print'(/,1x,a)', refs #if defined (__GFORTRAN__) prm%output = output_as1dStr(pl) #else prm%output = pl%get_as1dStr('output',defaultVal=emptyStrArray) #endif N_sl = pl%get_as1dInt('N_sl',defaultVal=emptyIntArray) N_tw = pl%get_as1dInt('N_tw',defaultVal=emptyIntArray) prm%sum_N_sl = sum(abs(N_sl)) prm%sum_N_tw = sum(abs(N_tw)) !-------------------------------------------------------------------------------------------------- ! slip related parameters slipActive: if (prm%sum_N_sl > 0) then N_fam = size(N_sl) ones = [(1.0_pREAL,i=1,N_fam)] prm%dot_gamma_0_sl = math_expand(pl%get_as1dReal('dot_gamma_0_sl',requiredSize=N_fam,defaultVal= ones), N_sl) prm%n_sl = math_expand(pl%get_as1dReal('n_sl', requiredSize=N_fam,defaultVal= ones), N_sl) prm%a_sl = math_expand(pl%get_as1dReal('a_sl', requiredSize=N_fam,defaultVal= ones), N_sl) prm%h_0_sl_sl = math_expand(pl%get_as1dReal('h_0_sl-sl', requiredSize=N_fam,defaultVal=0.0_pREAL*ones), N_sl) prm%c_1 = math_expand(pl%get_as1dReal('c_1', requiredSize=N_fam,defaultVal=0.0_pREAL*ones), N_sl) prm%c_2 = math_expand(pl%get_as1dReal('c_2', requiredSize=N_fam,defaultVal= ones), N_sl) xi_0_sl = math_expand(pl%get_as1dReal('xi_0_sl', requiredSize=N_fam), N_sl) prm%xi_inf_sl = math_expand(pl%get_as1dReal('xi_inf_sl', requiredSize=N_fam), N_sl) prm%f_sat_sl_tw = math_expand(pl%get_as1dReal('f_sat_sl-tw',requiredSize=N_fam,defaultVal=0.0_pREAL*ones), N_sl) prm%h_sl_sl = crystal_interaction_SlipBySlip(N_sl,pl%get_as1dReal('h_sl-sl'),phase_lattice(ph)) prm%P_sl = crystal_SchmidMatrix_slip(N_sl,phase_lattice(ph),phase_cOverA(ph)) if (phase_lattice(ph) == 'cI') then a = pl%get_as1dReal('a_nonSchmid',defaultVal=emptyRealArray) if (size(a) > 0) prm%nonSchmidActive = .true. prm%P_nS_pos = crystal_nonSchmidMatrix(N_sl,a,+1) prm%P_nS_neg = crystal_nonSchmidMatrix(N_sl,a,-1) else prm%P_nS_pos = prm%P_sl prm%P_nS_neg = prm%P_sl end if prm%systems_sl = crystal_labels_slip(N_sl,phase_lattice(ph)) ! sanity checks if (any(prm%dot_gamma_0_sl <= 0.0_pREAL)) extmsg = trim(extmsg)//' dot_gamma_0_sl' if (any(prm%a_sl <= 0.0_pREAL)) extmsg = trim(extmsg)//' a_sl' if (any(prm%n_sl <= 0.0_pREAL)) extmsg = trim(extmsg)//' n_sl' if (any(xi_0_sl <= 0.0_pREAL)) extmsg = trim(extmsg)//' xi_0_sl' if (any(prm%xi_inf_sl <= 0.0_pREAL)) extmsg = trim(extmsg)//' xi_inf_sl' else slipActive xi_0_sl = emptyRealArray allocate(prm%dot_gamma_0_sl, & !< reference shear strain rate for slip prm%a_sl, & prm%n_sl, & !< stress exponent for slip prm%xi_inf_sl, & !< maximum critical shear stress for slip prm%f_sat_sl_tw, & !< push-up factor for slip saturation due to twinning prm%c_1, & prm%c_2, & prm%h_0_sl_sl, & !< reference hardening slip - slip source=emptyRealArray) allocate(prm%h_sl_sl(0,0)) end if slipActive !-------------------------------------------------------------------------------------------------- ! twin related parameters twinActive: if (prm%sum_N_tw > 0) then N_fam = size(N_tw) ones = [(1.0_pREAL,i=1,N_fam)] prm%dot_gamma_0_tw = math_expand(pl%get_as1dReal('dot_gamma_0_tw', requiredSize=N_fam,defaultVal=ones), N_tw) prm%n_tw = math_expand(pl%get_as1dReal('n_tw', requiredSize=N_fam,defaultVal= ones), N_tw) prm%c_3 = math_expand(pl%get_as1dReal('c_3', requiredSize=N_fam,defaultVal=0.0_pREAL*ones), N_tw) prm%c_4 = math_expand(pl%get_as1dReal('c_4', requiredSize=N_fam,defaultVal=0.0_pREAL*ones), N_tw) prm%h_0_tw_tw = math_expand(pl%get_as1dReal('h_0_tw-tw', requiredSize=N_fam,defaultVal=0.0_pReal*ones), N_tw) xi_0_tw = math_expand(pl%get_as1dReal('xi_0_tw', requiredSize=N_fam), N_tw) prm%gamma_char = crystal_characteristicShear_twin(N_tw,phase_lattice(ph),phase_cOverA(ph)) prm%h_tw_tw = crystal_interaction_TwinByTwin(N_tw,pl%get_as1dReal('h_tw-tw'),phase_lattice(ph)) prm%P_tw = crystal_SchmidMatrix_twin(N_tw,phase_lattice(ph),phase_cOverA(ph)) prm%systems_tw = crystal_labels_twin(N_tw,phase_lattice(ph)) ! sanity checks if (any(prm%dot_gamma_0_tw <= 0.0_pREAL)) extmsg = trim(extmsg)//' dot_gamma_0_tw' if (any(prm%n_tw <= 0.0_pREAL)) extmsg = trim(extmsg)//' n_tw' if (any(xi_0_tw <= 0.0_pREAL)) extmsg = trim(extmsg)//' xi_0_tw' else twinActive xi_0_tw = emptyRealArray allocate(prm%dot_gamma_0_tw, & !< reference shear strain rate for twin prm%n_tw, & !< stress exponent for twin prm%c_3, & prm%c_4, & prm%gamma_char, & !< characteristic shear for twins prm%h_0_tw_sl, & !< reference hardening twin - slip prm%h_0_tw_tw, & !< reference hardening twin - twin source=emptyRealArray) allocate(prm%h_tw_tw(0,0)) end if twinActive !-------------------------------------------------------------------------------------------------- ! slip-twin related parameters slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then prm%h_0_tw_sl = math_expand(pl%get_as1dReal('h_0_tw-sl',requiredSize=N_fam,defaultVal=0.0_pReal*ones), N_tw) prm%h_sl_tw = crystal_interaction_SlipByTwin(N_sl,N_tw,pl%get_as1dReal('h_sl-tw'),phase_lattice(ph)) prm%h_tw_sl = crystal_interaction_TwinBySlip(N_tw,N_sl,pl%get_as1dReal('h_tw-sl'),phase_lattice(ph)) else slipAndTwinActive allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0 allocate(prm%h_tw_sl(prm%sum_N_tw,prm%sum_N_sl)) ! at least one dimension is 0 prm%h_0_tw_sl = [(0.0_pREAL,i=1,size(N_tw))] end if slipAndTwinActive !-------------------------------------------------------------------------------------------------- ! allocate state arrays Nmembers = count(material_ID_phase == ph) sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl & + size(['xi_tw ','gamma_tw']) * prm%sum_N_tw sizeState = sizeDotState call phase_allocateState(plasticState(ph),Nmembers,sizeState,sizeDotState,0) deallocate(plasticState(ph)%dotState) ! ToDo: remove dotState completely !-------------------------------------------------------------------------------------------------- ! state aliases and initialization startIndex = 1 endIndex = prm%sum_N_sl idx_dot%xi_sl = [startIndex,endIndex] stt%xi_sl => plasticState(ph)%state(startIndex:endIndex,:) stt%xi_sl = spread(xi_0_sl, 2, Nmembers) plasticState(ph)%atol(startIndex:endIndex) = pl%get_asReal('atol_xi',defaultVal=1.0_pREAL) if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pREAL)) extmsg = trim(extmsg)//' atol_xi' startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_tw idx_dot%xi_tw = [startIndex,endIndex] stt%xi_tw => plasticState(ph)%state(startIndex:endIndex,:) stt%xi_tw = spread(xi_0_tw, 2, Nmembers) plasticState(ph)%atol(startIndex:endIndex) = pl%get_asReal('atol_xi',defaultVal=1.0_pREAL) startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_sl idx_dot%gamma_sl = [startIndex,endIndex] stt%gamma_sl => plasticState(ph)%state(startIndex:endIndex,:) plasticState(ph)%atol(startIndex:endIndex) = pl%get_asReal('atol_gamma',defaultVal=1.0e-6_pREAL) if (any(plasticState(ph)%atol(startIndex:endIndex) < 0.0_pREAL)) extmsg = trim(extmsg)//' atol_gamma' startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_tw idx_dot%gamma_tw = [startIndex,endIndex] stt%gamma_tw => plasticState(ph)%state(startIndex:endIndex,:) plasticState(ph)%atol(startIndex:endIndex) = pl%get_asReal('atol_gamma',defaultVal=1.0e-6_pREAL) end associate !-------------------------------------------------------------------------------------------------- ! exit if any parameter is out of range if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)) end do end function plastic_phenopowerlaw_init !-------------------------------------------------------------------------------------------------- !> @brief Calculate plastic velocity gradient and its tangent. !> @details assumes that deformation by dislocation glide affects twinned and untwinned volume ! equally (Taylor assumption). Twinning happens only in untwinned volume !-------------------------------------------------------------------------------------------------- pure module subroutine phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,en) real(pREAL), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pREAL), dimension(3,3,3,3), intent(out) :: & dLp_dMp !< derivative of Lp with respect to the Mandel stress real(pREAL), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & ph, & en integer :: & i,k,l,m,n real(pREAL), dimension(param(ph)%sum_N_sl) :: & dot_gamma_sl_pos,dot_gamma_sl_neg, & ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg real(pREAL), dimension(param(ph)%sum_N_tw) :: & dot_gamma_tw,ddot_gamma_dtau_tw Lp = 0.0_pREAL dLp_dMp = 0.0_pREAL associate(prm => param(ph)) call kinetics_sl(Mp,ph,en,dot_gamma_sl_pos,dot_gamma_sl_neg,ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg) slipSystems: do i = 1, prm%sum_N_sl Lp = Lp + (dot_gamma_sl_pos(i)+dot_gamma_sl_neg(i))*prm%P_sl(1:3,1:3,i) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) & + ddot_gamma_dtau_sl_pos(i) * prm%P_sl(k,l,i) * prm%P_nS_pos(m,n,i) & + ddot_gamma_dtau_sl_neg(i) * prm%P_sl(k,l,i) * prm%P_nS_neg(m,n,i) end do slipSystems call kinetics_tw(Mp,ph,en,dot_gamma_tw,ddot_gamma_dtau_tw) twinSystems: do i = 1, prm%sum_N_tw Lp = Lp + dot_gamma_tw(i)*prm%P_tw(1:3,1:3,i) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) & + ddot_gamma_dtau_tw(i)*prm%P_tw(k,l,i)*prm%P_tw(m,n,i) end do twinSystems end associate end subroutine phenopowerlaw_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief Calculate the rate of change of microstructure. !-------------------------------------------------------------------------------------------------- module function phenopowerlaw_dotState(Mp,ph,en) result(dotState) real(pREAL), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & ph, & en real(pREAL), dimension(plasticState(ph)%sizeDotState) :: & dotState real(pREAL) :: & sumF real(pREAL), dimension(param(ph)%sum_N_sl) :: & dot_gamma_sl_pos,dot_gamma_sl_neg, & xi_sl_sat_offset, & left_SlipSlip associate(prm => param(ph), stt => state(ph), & dot_xi_sl => dotState(indexDotState(ph)%xi_sl(1):indexDotState(ph)%xi_sl(2)), & dot_xi_tw => dotState(indexDotState(ph)%xi_tw(1):indexDotState(ph)%xi_tw(2)), & dot_gamma_sl => dotState(indexDotState(ph)%gamma_sl(1):indexDotState(ph)%gamma_sl(2)), & dot_gamma_tw => dotState(indexDotState(ph)%gamma_tw(1):indexDotState(ph)%gamma_tw(2))) call kinetics_sl(Mp,ph,en, dot_gamma_sl_pos,dot_gamma_sl_neg) dot_gamma_sl = abs(dot_gamma_sl_pos+dot_gamma_sl_neg) call kinetics_tw(Mp,ph,en, dot_gamma_tw) sumF = sum(stt%gamma_tw(:,en)/prm%gamma_char) xi_sl_sat_offset = prm%f_sat_sl_tw*sqrt(sumF) left_SlipSlip = sign(abs(1.0_pREAL-stt%xi_sl(:,en) / (prm%xi_inf_sl+xi_sl_sat_offset))**prm%a_sl, & 1.0_pREAL-stt%xi_sl(:,en) / (prm%xi_inf_sl+xi_sl_sat_offset)) dot_xi_sl = prm%h_0_sl_sl * (1.0_pREAL + prm%c_1 * sumF**prm%c_2) & * left_SlipSlip * matmul(prm%h_sl_sl,dot_gamma_sl) & + matmul(prm%h_sl_tw,dot_gamma_tw) dot_xi_tw = prm%h_0_tw_sl * sum(stt%gamma_sl(:,en))**prm%c_3 & * matmul(prm%h_tw_sl,dot_gamma_sl) & + prm%h_0_tw_tw * sumF**prm%c_4 * matmul(prm%h_tw_tw,dot_gamma_tw) end associate end function phenopowerlaw_dotState !-------------------------------------------------------------------------------------------------- !> @brief Write results to HDF5 output file. !-------------------------------------------------------------------------------------------------- module subroutine plastic_phenopowerlaw_result(ph,group) integer, intent(in) :: ph character(len=*), intent(in) :: group integer :: ou associate(prm => param(ph), stt => state(ph)) do ou = 1,size(prm%output) select case(trim(prm%output(ou))) case('xi_sl') call result_writeDataset(stt%xi_sl,group,trim(prm%output(ou)), & 'resistance against plastic slip','Pa',prm%systems_sl) case('gamma_sl') call result_writeDataset(stt%gamma_sl,group,trim(prm%output(ou)), & 'plastic shear','1',prm%systems_sl) case('xi_tw') call result_writeDataset(stt%xi_tw,group,trim(prm%output(ou)), & 'resistance against twinning','Pa',prm%systems_tw) case('gamma_tw') call result_writeDataset(stt%gamma_tw,group,trim(prm%output(ou)), & 'twinning shear','1',prm%systems_tw) end select end do end associate end subroutine plastic_phenopowerlaw_result !-------------------------------------------------------------------------------------------------- !> @brief Calculate shear rates on slip systems and their derivatives with respect to resolved ! stress. !> @details Derivatives are calculated only optionally. ! NOTE: Contrary to common convention, here the result (i.e. intent(out)) variables have to be put ! at the end since some of them are optional. !-------------------------------------------------------------------------------------------------- pure subroutine kinetics_sl(Mp,ph,en, & dot_gamma_sl_pos,dot_gamma_sl_neg,ddot_gamma_dtau_sl_pos,ddot_gamma_dtau_sl_neg) real(pREAL), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & ph, & en real(pREAL), intent(out), dimension(param(ph)%sum_N_sl) :: & dot_gamma_sl_pos, & dot_gamma_sl_neg real(pREAL), intent(out), optional, dimension(param(ph)%sum_N_sl) :: & ddot_gamma_dtau_sl_pos, & ddot_gamma_dtau_sl_neg real(pREAL), dimension(param(ph)%sum_N_sl) :: & tau_sl_pos, & tau_sl_neg integer :: i associate(prm => param(ph), stt => state(ph)) do i = 1, prm%sum_N_sl tau_sl_pos(i) = math_tensordot(Mp,prm%P_nS_pos(1:3,1:3,i)) tau_sl_neg(i) = merge(math_tensordot(Mp,prm%P_nS_neg(1:3,1:3,i)), & 0.0_pREAL, prm%nonSchmidActive) end do where(dNeq0(tau_sl_pos)) dot_gamma_sl_pos = prm%dot_gamma_0_sl * merge(0.5_pREAL,1.0_pREAL, prm%nonSchmidActive) & ! 1/2 if non-Schmid active * sign(abs(tau_sl_pos/stt%xi_sl(:,en))**prm%n_sl, tau_sl_pos) else where dot_gamma_sl_pos = 0.0_pREAL end where where(dNeq0(tau_sl_neg)) dot_gamma_sl_neg = prm%dot_gamma_0_sl * 0.5_pREAL & ! only used if non-Schmid active, always 1/2 * sign(abs(tau_sl_neg/stt%xi_sl(:,en))**prm%n_sl, tau_sl_neg) else where dot_gamma_sl_neg = 0.0_pREAL end where if (present(ddot_gamma_dtau_sl_pos)) then where(dNeq0(dot_gamma_sl_pos)) ddot_gamma_dtau_sl_pos = dot_gamma_sl_pos*prm%n_sl/tau_sl_pos else where ddot_gamma_dtau_sl_pos = 0.0_pREAL end where end if if (present(ddot_gamma_dtau_sl_neg)) then where(dNeq0(dot_gamma_sl_neg)) ddot_gamma_dtau_sl_neg = dot_gamma_sl_neg*prm%n_sl/tau_sl_neg else where ddot_gamma_dtau_sl_neg = 0.0_pREAL end where end if end associate end subroutine kinetics_sl !-------------------------------------------------------------------------------------------------- !> @brief Calculate shear rates on twin systems and their derivatives with respect to resolved ! stress. Twinning is assumed to take place only in an untwinned volume. !> @details Derivatives are calculated and returned if corresponding output variables are present in the argument list. ! NOTE: Contrary to common convention, here the result (i.e. intent(out)) variables have to be put ! at the end since some of them are optional. !-------------------------------------------------------------------------------------------------- pure subroutine kinetics_tw(Mp,ph,en,& dot_gamma_tw,ddot_gamma_dtau_tw) real(pREAL), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & ph, & en real(pREAL), dimension(param(ph)%sum_N_tw), intent(out) :: & dot_gamma_tw real(pREAL), dimension(param(ph)%sum_N_tw), intent(out), optional :: & ddot_gamma_dtau_tw real(pREAL), dimension(param(ph)%sum_N_tw) :: & tau_tw integer :: i associate(prm => param(ph), stt => state(ph)) tau_tw = [(math_tensordot(Mp,prm%P_tw(1:3,1:3,i)),i=1,prm%sum_N_tw)] where(tau_tw > 0.0_pREAL) dot_gamma_tw = (1.0_pREAL-sum(stt%gamma_tw(:,en)/prm%gamma_char)) & ! only twin in untwinned volume fraction * prm%dot_gamma_0_tw*(abs(tau_tw)/stt%xi_tw(:,en))**prm%n_tw else where dot_gamma_tw = 0.0_pREAL end where if (present(ddot_gamma_dtau_tw)) then where(dNeq0(dot_gamma_tw)) ddot_gamma_dtau_tw = dot_gamma_tw*prm%n_tw/tau_tw else where ddot_gamma_dtau_tw = 0.0_pREAL end where end if end associate end subroutine kinetics_tw end submodule phenopowerlaw