#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np from collections import defaultdict from optparse import OptionParser import damask scriptID = '$Id$' scriptName = scriptID.split()[1][:-3] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Uniformly scale values of scalar, vector, or tensor columns by given factor. """, version = scriptID) parser.add_option('-s','--special', dest='special', action='extend', type='string', metavar='', help='heading of columns containing field values of special dimension') parser.add_option('-d','--dimension', dest='N', action='store', type='int', metavar='int', help='dimension of special field values [%default]') parser.add_option('-v','--vector', dest='vector', action='extend', metavar='', help='column heading of vector to scale') parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='', help='column heading of tensor to scale') parser.add_option('-f','--factor', dest='factor', action='extend', metavar='', help='list of scalar, vector, and tensor scaling factors (in this order!)') parser.set_defaults(special = []) parser.set_defaults(vector = []) parser.set_defaults(tensor = []) parser.set_defaults(factor = []) parser.set_defaults(N = 1) (options,filenames) = parser.parse_args() options.factor = np.array(options.factor,'d') datainfo = { # list of requested labels per datatype 'scalar': {'len':options.N, 'label':[]}, 'vector': {'len':3, 'label':[]}, 'tensor': {'len':9, 'label':[]}, } length = 0 if options.special != []: datainfo['special']['label'] += options.special; length += len(options.scalar)*datainfo['special']['len'] if options.vector != []: datainfo['vector']['label'] += options.vector; length += len(options.vector)*datainfo['vector']['len'] if options.tensor != []: datainfo['tensor']['label'] += options.tensor; length += len(options.tensor)*datainfo['tensor']['len'] if len(options.factor) != length: parser.error('length of scaling vector does not match column count...') # ------------------------------------------ setup file handles ------------------------------------ files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) # ------------------------------------------ loop over input files --------------------------------- for file in files: if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n') table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) # --------------- figure out columns to process --------------------------------------------------- active = defaultdict(list) column = defaultdict(dict) for datatype,info in datainfo.items(): for label in info['label']: key = '1_'+label if info['len'] > 1 else label if key in table.labels: active[datatype].append(label) column[datatype][label] = table.labels.index(key) # remember columns of requested data else: file['croak'].write('column %s not found...\n'%label) # ------------------------------------------ assemble header --------------------------------------- table.head_write() # ------------------------------------------ process data ------------------------------------------ outputAlive = True while outputAlive and table.data_read(): # read next data line of ASCII table i = 0 for datatype,labels in sorted(active.items(),key=lambda x:datainfo[x[0]]['len']): # loop over scalar,vector,tensor for label in labels: # loop over all requested labels for j in xrange(datainfo[datatype]['len']): # loop over entity elements table.data[column[datatype][label]+j] = float(table.data[column[datatype][label]+j]) * options.factor[i] i += 1 outputAlive = table.data_write() # output processed line # ------------------------------------------ output result ----------------------------------------- outputAlive and table.output_flush() # just in case of buffered ASCII table table.input_close() # close input ASCII table (works for stdin) table.output_close() # close output ASCII table (works for stdout) if file['name'] != 'STDIN': os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new