!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver !-------------------------------------------------------------------------------------------------- module mesh use, intrinsic :: iso_c_binding use prec, only: pReal, pInt use mesh_base implicit none private integer(pInt), public, protected :: & mesh_Nnodes, & !< total number of nodes in mesh mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates) mesh_Ncells, & !< total number of cells in mesh mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element mesh_maxNsharedElems !< max number of CP elements sharing a node integer(pInt), dimension(:), allocatable, private :: & microGlobal integer(pInt), dimension(:), allocatable, private :: & mesh_homogenizationAt integer(pInt), dimension(:,:), allocatable, public, protected :: & mesh_element !< entryCount and list of elements containing node integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: & mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me] real(pReal), public, protected :: & mesh_unitlength !< physical length of one unit in mesh real(pReal), dimension(:,:), allocatable, public :: & mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!) mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!) real(pReal), dimension(:,:), allocatable, public, protected :: & mesh_ipVolume, & !< volume associated with IP (initially!) mesh_node0 !< node x,y,z coordinates (initially!) real(pReal), dimension(:,:,:), allocatable, public, protected :: & mesh_ipArea !< area of interface to neighboring IP (initially!) real(pReal), dimension(:,:,:), allocatable, public :: & mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!) real(pReal),dimension(:,:,:,:), allocatable, public, protected :: & mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!) logical, dimension(3), public, parameter :: mesh_periodicSurface = .true. !< flag indicating periodic outer surfaces (used for fluxes) integer(pInt), dimension(:,:), allocatable, private :: & mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID integer(pInt),dimension(:,:,:), allocatable, private :: & mesh_cell !< cell connectivity for each element,ip/cell integer(pInt), dimension(:,:,:), allocatable, private :: & FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell ! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS) ! Hence, I suggest to prefix with "FE_" integer(pInt), parameter, private :: & FE_Ngeomtypes = 10_pInt, & FE_Ncelltypes = 4_pInt, & FE_maxNmatchingNodesPerFace = 4_pInt, & FE_maxNfaces = 6_pInt, & FE_maxNcellnodesPerCell = 8_pInt, & FE_maxNcellfaces = 6_pInt, & FE_maxNcellnodesPerCellface = 4_pInt integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type int([ & 3, & ! (2D 3node) 4, & ! (2D 4node) 4, & ! (3D 4node) 8 & ! (3D 8node) ],pInt) integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type int([& 2, & ! (2D 3node) 2, & ! (2D 4node) 3, & ! (3D 4node) 4 & ! (3D 8node) ],pInt) integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type int([& 3, & ! (2D 3node) 4, & ! (2D 4node) 4, & ! (3D 4node) 6 & ! (3D 8node) ],pInt) integer(pInt), dimension(3), public, protected :: & grid !< (global) grid integer(pInt), public, protected :: & mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh grid3, & !< (local) grid in 3rd direction grid3Offset !< (local) grid offset in 3rd direction real(pReal), dimension(3), public, protected :: & geomSize real(pReal), public, protected :: & size3, & !< (local) size in 3rd direction size3offset !< (local) size offset in 3rd direction public :: & mesh_init, & mesh_cellCenterCoordinates private :: & mesh_build_cellconnectivity, & mesh_build_ipAreas, & mesh_build_FEdata, & mesh_spectral_build_nodes, & mesh_spectral_build_elements, & mesh_spectral_build_ipNeighborhood, & mesh_build_cellnodes, & mesh_build_ipVolumes, & mesh_build_ipCoordinates type, public, extends(tMesh) :: tMesh_grid integer(pInt), dimension(3), public :: & grid !< (global) grid integer(pInt), public :: & mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh grid3, & !< (local) grid in 3rd direction grid3Offset !< (local) grid offset in 3rd direction real(pReal), dimension(3), public :: & geomSize real(pReal), public :: & size3, & !< (local) size in 3rd direction size3offset contains procedure, pass(self) :: tMesh_grid_init generic, public :: init => tMesh_grid_init end type tMesh_grid type(tMesh_grid), public, protected :: theMesh contains subroutine tMesh_grid_init(self,nodes) implicit none class(tMesh_grid) :: self real(pReal), dimension(:,:), intent(in) :: nodes call self%tMesh%init('grid',10_pInt,nodes) end subroutine tMesh_grid_init !-------------------------------------------------------------------------------------------------- !> @brief initializes the mesh by calling all necessary private routines the mesh module !! Order and routines strongly depend on type of solver !-------------------------------------------------------------------------------------------------- subroutine mesh_init(ip,el) #include use PETScsys use DAMASK_interface use IO, only: & IO_error use debug, only: & debug_e, & debug_i, & debug_level, & debug_mesh, & debug_levelBasic use numerics, only: & numerics_unitlength use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP implicit none include 'fftw3-mpi.f03' integer(C_INTPTR_T) :: devNull, local_K, local_K_offset integer :: ierr, worldsize integer(pInt), intent(in), optional :: el, ip integer(pInt) :: j logical :: myDebug write(6,'(/,a)') ' <<<+- mesh init -+>>>' mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) call fftw_mpi_init() call mesh_spectral_read_grid() call MPI_comm_size(PETSC_COMM_WORLD, worldsize, ierr) if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_comm_size') if(worldsize>grid(3)) call IO_error(894_pInt, ext_msg='number of processes exceeds grid(3)') devNull = fftw_mpi_local_size_3d(int(grid(3),C_INTPTR_T), & int(grid(2),C_INTPTR_T), & int(grid(1),C_INTPTR_T)/2+1, & PETSC_COMM_WORLD, & local_K, & ! domain grid size along z local_K_offset) ! domain grid offset along z grid3 = int(local_K,pInt) grid3Offset = int(local_K_offset,pInt) size3 = geomSize(3)*real(grid3,pReal) /real(grid(3),pReal) size3Offset = geomSize(3)*real(grid3Offset,pReal)/real(grid(3),pReal) mesh_NcpElemsGlobal = product(grid) mesh_Nnodes = product(grid(1:2) + 1_pInt)*(grid3 + 1_pInt) call mesh_spectral_build_nodes() if (myDebug) write(6,'(a)') ' Built nodes'; flush(6) call theMesh%init(mesh_node) call theMesh%setNelems(product(grid(1:2))*grid3) mesh_homogenizationAt = mesh_homogenizationAt(product(grid(1:2))*grid3) ! reallocate/shrink in case of MPI mesh_maxNipNeighbors = theMesh%elem%nIPneighbors call mesh_spectral_build_elements() if (myDebug) write(6,'(a)') ' Built elements'; flush(6) call mesh_build_FEdata ! get properties of the different types of elements call mesh_build_cellconnectivity if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6) mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes) if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6) call mesh_build_ipCoordinates if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6) call mesh_build_ipVolumes if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6) call mesh_build_ipAreas if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6) call mesh_spectral_build_ipNeighborhood if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6) if (debug_e < 1 .or. debug_e > theMesh%nElems) & call IO_error(602_pInt,ext_msg='element') ! selected element does not exist if (debug_i < 1 .or. debug_i > theMesh%elem%nIPs) & call IO_error(602_pInt,ext_msg='IP') ! selected element does not have requested IP FEsolving_execElem = [ 1_pInt,theMesh%nElems ] ! parallel loop bounds set to comprise all DAMASK elements allocate(FEsolving_execIP(2_pInt,theMesh%nElems), source=1_pInt) ! parallel loop bounds set to comprise from first IP... forall (j = 1_pInt:theMesh%nElems) FEsolving_execIP(2,j) = theMesh%elem%nIPs ! ...up to own IP count for each element !!!! COMPATIBILITY HACK !!!! ! for a homogeneous mesh, all elements have the same number of IPs and and cell nodes. ! hence, xxPerElem instead of maxXX ! better name theMesh%homogenizationAt = mesh_element(3,:) theMesh%microstructureAt = mesh_element(4,:) !!!!!!!!!!!!!!!!!!!!!!!! deallocate(mesh_cell) end subroutine mesh_init !-------------------------------------------------------------------------------------------------- !> @brief Parses geometry file !> @details important variables have an implicit "save" attribute. Therefore, this function is ! supposed to be called only once! !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_read_grid() use IO, only: & IO_stringPos, & IO_lc, & IO_stringValue, & IO_intValue, & IO_floatValue, & IO_error use DAMASK_interface, only: & geometryFile implicit none character(len=:), allocatable :: rawData character(len=65536) :: line integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: h =- 1_pInt integer(pInt) :: & headerLength = -1_pInt, & !< length of header (in lines) fileLength, & !< length of the geom file (in characters) fileUnit, & startPos, endPos, & myStat, & l, & !< line counter c, & !< counter for # microstructures in line o, & !< order of "to" packing e, & !< "element", i.e. spectral collocation point i, j grid = -1_pInt geomSize = -1.0_pReal !-------------------------------------------------------------------------------------------------- ! read data as stream inquire(file = trim(geometryFile), size=fileLength) open(newunit=fileUnit, file=trim(geometryFile), access='stream',& status='old', position='rewind', action='read',iostat=myStat) if(myStat /= 0_pInt) call IO_error(100_pInt,ext_msg=trim(geometryFile)) allocate(character(len=fileLength)::rawData) read(fileUnit) rawData close(fileUnit) !-------------------------------------------------------------------------------------------------- ! get header length endPos = index(rawData,new_line('')) if(endPos <= index(rawData,'head')) then startPos = len(rawData) call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_read_grid') else chunkPos = IO_stringPos(rawData(1:endPos)) if (chunkPos(1) < 2_pInt) call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_read_grid') headerLength = IO_intValue(rawData(1:endPos),chunkPos,1_pInt) startPos = endPos + 1_pInt endif !-------------------------------------------------------------------------------------------------- ! read and interprete header l = 0 do while (l < headerLength .and. startPos < len(rawData)) endPos = startPos + index(rawData(startPos:),new_line('')) - 1_pInt if (endPos < startPos) endPos = len(rawData) ! end of file without new line line = rawData(startPos:endPos) startPos = endPos + 1_pInt l = l + 1_pInt chunkPos = IO_stringPos(trim(line)) if (chunkPos(1) < 2) cycle ! need at least one keyword value pair select case ( IO_lc(IO_StringValue(trim(line),chunkPos,1_pInt,.true.)) ) case ('grid') if (chunkPos(1) > 6) then do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,chunkPos,j))) case('a') grid(1) = IO_intValue(line,chunkPos,j+1_pInt) case('b') grid(2) = IO_intValue(line,chunkPos,j+1_pInt) case('c') grid(3) = IO_intValue(line,chunkPos,j+1_pInt) end select enddo endif case ('size') if (chunkPos(1) > 6) then do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,chunkPos,j))) case('x') geomSize(1) = IO_floatValue(line,chunkPos,j+1_pInt) case('y') geomSize(2) = IO_floatValue(line,chunkPos,j+1_pInt) case('z') geomSize(3) = IO_floatValue(line,chunkPos,j+1_pInt) end select enddo endif case ('homogenization') if (chunkPos(1) > 1) h = IO_intValue(line,chunkPos,2_pInt) end select enddo !-------------------------------------------------------------------------------------------------- ! sanity checks if(h < 1_pInt) & call IO_error(error_ID = 842_pInt, ext_msg='homogenization (mesh_spectral_read_grid)') if(any(grid < 1_pInt)) & call IO_error(error_ID = 842_pInt, ext_msg='grid (mesh_spectral_read_grid)') if(any(geomSize < 0.0_pReal)) & call IO_error(error_ID = 842_pInt, ext_msg='size (mesh_spectral_read_grid)') allocate(microGlobal(product(grid)), source = -1_pInt) allocate(mesh_homogenizationAt(product(grid)), source = h) ! too large in case of MPI (shrink later, not very elegant) !-------------------------------------------------------------------------------------------------- ! read and interprete content e = 1_pInt do while (startPos < len(rawData)) endPos = startPos + index(rawData(startPos:),new_line('')) - 1_pInt if (endPos < startPos) endPos = len(rawData) ! end of file without new line line = rawData(startPos:endPos) startPos = endPos + 1_pInt l = l + 1_pInt chunkPos = IO_stringPos(trim(line)) noCompression: if (chunkPos(1) /= 3) then c = chunkPos(1) microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)] else noCompression compression: if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'of') then c = IO_intValue(line,chunkPos,1) microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,3),i = 1_pInt,IO_intValue(line,chunkPos,1))] else if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'to') then compression c = abs(IO_intValue(line,chunkPos,3) - IO_intValue(line,chunkPos,1)) + 1_pInt o = merge(+1_pInt, -1_pInt, IO_intValue(line,chunkPos,3) > IO_intValue(line,chunkPos,1)) microGlobal(e:e+c-1_pInt) = [(i, i = IO_intValue(line,chunkPos,1),IO_intValue(line,chunkPos,3),o)] else compression c = chunkPos(1) microGlobal(e:e+c-1_pInt) = [(IO_intValue(line,chunkPos,i+1_pInt), i=0_pInt, c-1_pInt)] endif compression endif noCompression e = e+c end do if (e-1 /= product(grid)) call IO_error(error_ID = 843_pInt, el=e) end subroutine mesh_spectral_read_grid !-------------------------------------------------------------------------------------------------- !> @brief Store x,y,z coordinates of all nodes in mesh. !! Allocates global arrays 'mesh_node0' and 'mesh_node' !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_build_nodes() implicit none integer(pInt) :: n allocate (mesh_node0 (3,mesh_Nnodes), source = 0.0_pReal) forall (n = 0_pInt:mesh_Nnodes-1_pInt) mesh_node0(1,n+1_pInt) = mesh_unitlength * & geomSize(1)*real(mod(n,(grid(1)+1_pInt) ),pReal) & / real(grid(1),pReal) mesh_node0(2,n+1_pInt) = mesh_unitlength * & geomSize(2)*real(mod(n/(grid(1)+1_pInt),(grid(2)+1_pInt)),pReal) & / real(grid(2),pReal) mesh_node0(3,n+1_pInt) = mesh_unitlength * & size3*real(mod(n/(grid(1)+1_pInt)/(grid(2)+1_pInt),(grid3+1_pInt)),pReal) & / real(grid3,pReal) + & size3offset end forall mesh_node = mesh_node0 end subroutine mesh_spectral_build_nodes !-------------------------------------------------------------------------------------------------- !> @brief Store FEid, type, material, texture, and node list per element. !! Allocates global array 'mesh_element' !> @todo does the IO_error makes sense? !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_build_elements() use IO, only: & IO_error implicit none integer(pInt) :: & e, & elemOffset allocate(mesh_element (4_pInt+8_pInt,theMesh%nElems), source = 0_pInt) elemOffset = product(grid(1:2))*grid3Offset e = 0_pInt do while (e < theMesh%nElems) ! fill expected number of elements, stop at end of data e = e+1_pInt ! valid element entry mesh_element( 1,e) = -1_pInt ! DEPRECATED mesh_element( 2,e) = 10_pInt mesh_element( 3,e) = mesh_homogenizationAt(e) mesh_element( 4,e) = microGlobal(e+elemOffset) ! microstructure mesh_element( 5,e) = e + (e-1_pInt)/grid(1) + & ((e-1_pInt)/(grid(1)*grid(2)))*(grid(1)+1_pInt) ! base node mesh_element( 6,e) = mesh_element(5,e) + 1_pInt mesh_element( 7,e) = mesh_element(5,e) + grid(1) + 2_pInt mesh_element( 8,e) = mesh_element(5,e) + grid(1) + 1_pInt mesh_element( 9,e) = mesh_element(5,e) +(grid(1) + 1_pInt) * (grid(2) + 1_pInt) ! second floor base node mesh_element(10,e) = mesh_element(9,e) + 1_pInt mesh_element(11,e) = mesh_element(9,e) + grid(1) + 2_pInt mesh_element(12,e) = mesh_element(9,e) + grid(1) + 1_pInt enddo if (e /= theMesh%nElems) call IO_error(880_pInt,e) end subroutine mesh_spectral_build_elements !-------------------------------------------------------------------------------------------------- !> @brief build neighborhood relations for spectral !> @details assign globals: mesh_ipNeighborhood !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_build_ipNeighborhood implicit none integer(pInt) :: & x,y,z, & e allocate(mesh_ipNeighborhood(3,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems),source=0_pInt) e = 0_pInt do z = 0_pInt,grid3-1_pInt do y = 0_pInt,grid(2)-1_pInt do x = 0_pInt,grid(1)-1_pInt e = e + 1_pInt mesh_ipNeighborhood(1,1,1,e) = z * grid(1) * grid(2) & + y * grid(1) & + modulo(x+1_pInt,grid(1)) & + 1_pInt mesh_ipNeighborhood(1,2,1,e) = z * grid(1) * grid(2) & + y * grid(1) & + modulo(x-1_pInt,grid(1)) & + 1_pInt mesh_ipNeighborhood(1,3,1,e) = z * grid(1) * grid(2) & + modulo(y+1_pInt,grid(2)) * grid(1) & + x & + 1_pInt mesh_ipNeighborhood(1,4,1,e) = z * grid(1) * grid(2) & + modulo(y-1_pInt,grid(2)) * grid(1) & + x & + 1_pInt mesh_ipNeighborhood(1,5,1,e) = modulo(z+1_pInt,grid3) * grid(1) * grid(2) & + y * grid(1) & + x & + 1_pInt mesh_ipNeighborhood(1,6,1,e) = modulo(z-1_pInt,grid3) * grid(1) * grid(2) & + y * grid(1) & + x & + 1_pInt mesh_ipNeighborhood(2,1:6,1,e) = 1_pInt mesh_ipNeighborhood(3,1,1,e) = 2_pInt mesh_ipNeighborhood(3,2,1,e) = 1_pInt mesh_ipNeighborhood(3,3,1,e) = 4_pInt mesh_ipNeighborhood(3,4,1,e) = 3_pInt mesh_ipNeighborhood(3,5,1,e) = 6_pInt mesh_ipNeighborhood(3,6,1,e) = 5_pInt enddo enddo enddo end subroutine mesh_spectral_build_ipNeighborhood !-------------------------------------------------------------------------------------------------- !> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes) !-------------------------------------------------------------------------------------------------- function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes) use debug, only: & debug_mesh, & debug_level, & debug_levelBasic implicit none real(pReal), intent(in), dimension(:,:,:,:) :: & centres real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: & nodes real(pReal), intent(in), dimension(3) :: & gDim real(pReal), intent(in), dimension(3,3) :: & Favg real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: & wrappedCentres integer(pInt) :: & i,j,k,n integer(pInt), dimension(3), parameter :: & diag = 1_pInt integer(pInt), dimension(3) :: & shift = 0_pInt, & lookup = 0_pInt, & me = 0_pInt, & iRes = 0_pInt integer(pInt), dimension(3,8) :: & neighbor = reshape([ & 0_pInt, 0_pInt, 0_pInt, & 1_pInt, 0_pInt, 0_pInt, & 1_pInt, 1_pInt, 0_pInt, & 0_pInt, 1_pInt, 0_pInt, & 0_pInt, 0_pInt, 1_pInt, & 1_pInt, 0_pInt, 1_pInt, & 1_pInt, 1_pInt, 1_pInt, & 0_pInt, 1_pInt, 1_pInt ], [3,8]) !-------------------------------------------------------------------------------------------------- ! initializing variables iRes = [size(centres,2),size(centres,3),size(centres,4)] nodes = 0.0_pReal wrappedCentres = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! report if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Meshing cubes around centroids' write(6,'(a,3(e12.5))') ' Dimension: ', gDim write(6,'(a,3(i5))') ' Resolution:', iRes endif !-------------------------------------------------------------------------------------------------- ! building wrappedCentres = centroids + ghosts wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres do k = 0_pInt,iRes(3)+1_pInt do j = 0_pInt,iRes(2)+1_pInt do i = 0_pInt,iRes(1)+1_pInt if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin me = [i,j,k] ! me on skin shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me) lookup = me-diag+shift*iRes wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = & centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) & - matmul(Favg, real(shift,pReal)*gDim) endif enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! averaging do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1) do n = 1_pInt,8_pInt nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = & nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), & j+1_pInt+neighbor(2,n), & k+1_pInt+neighbor(3,n) ) enddo enddo; enddo; enddo nodes = nodes/8.0_pReal end function mesh_nodesAroundCentres !################################################################################################################# !################################################################################################################# !################################################################################################################# ! The following routines are not solver specific and should be included in mesh_base (most likely in modified form) !################################################################################################################# !################################################################################################################# !################################################################################################################# !-------------------------------------------------------------------------------------------------- !> @brief Split CP elements into cells. !> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell'). !> Cell nodes that are also matching nodes are unique in the list of cell nodes, !> all others (currently) might be stored more than once. !> Also allocates the 'mesh_node' array. !-------------------------------------------------------------------------------------------------- subroutine mesh_build_cellconnectivity implicit none integer(pInt), dimension(:), allocatable :: & matchingNode2cellnode integer(pInt), dimension(:,:), allocatable :: & cellnodeParent integer(pInt), dimension(theMesh%elem%Ncellnodes) :: & localCellnode2globalCellnode integer(pInt) :: & e,n,i, & matchingNodeID, & localCellnodeID integer(pInt), dimension(FE_Ngeomtypes), parameter :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry int([ & 3, & ! element 6 (2D 3node 1ip) 3, & ! element 125 (2D 6node 3ip) 4, & ! element 11 (2D 4node 4ip) 4, & ! element 27 (2D 8node 9ip) 4, & ! element 134 (3D 4node 1ip) 4, & ! element 127 (3D 10node 4ip) 6, & ! element 136 (3D 6node 6ip) 8, & ! element 117 (3D 8node 1ip) 8, & ! element 7 (3D 8node 8ip) 8 & ! element 21 (3D 20node 27ip) ],pInt) allocate(mesh_cell(FE_maxNcellnodesPerCell,theMesh%elem%nIPs,theMesh%nElems), source=0_pInt) allocate(matchingNode2cellnode(theMesh%nNodes), source=0_pInt) allocate(cellnodeParent(2_pInt,theMesh%elem%Ncellnodes*theMesh%nElems), source=0_pInt) mesh_Ncells = theMesh%nElems*theMesh%elem%nIPs !-------------------------------------------------------------------------------------------------- ! Count cell nodes (including duplicates) and generate cell connectivity list mesh_Ncellnodes = 0_pInt do e = 1_pInt,theMesh%nElems localCellnode2globalCellnode = 0_pInt do i = 1_pInt,theMesh%elem%nIPs do n = 1_pInt,theMesh%elem%NcellnodesPerCell localCellnodeID = theMesh%elem%cell(n,i) if (localCellnodeID <= FE_NmatchingNodes(theMesh%elem%geomType)) then ! this cell node is a matching node matchingNodeID = mesh_element(4_pInt+localCellnodeID,e) if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ... mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ... matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID endif mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID) else ! this cell node is no matching node if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ... mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ... localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ... cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID endif mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID) endif enddo enddo enddo allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes)) allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes)) forall(n = 1_pInt:mesh_Ncellnodes) mesh_cellnodeParent(1,n) = cellnodeParent(1,n) mesh_cellnodeParent(2,n) = cellnodeParent(2,n) endforall end subroutine mesh_build_cellconnectivity !-------------------------------------------------------------------------------------------------- !> @brief Calculate position of cellnodes from the given position of nodes !> Build list of cellnodes' coordinates. !> Cellnode coordinates are calculated from a weighted sum of node coordinates. !-------------------------------------------------------------------------------------------------- function mesh_build_cellnodes(nodes,Ncellnodes) implicit none integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes integer(pInt) :: & e,n,m, & localCellnodeID real(pReal), dimension(3) :: & myCoords mesh_build_cellnodes = 0.0_pReal !$OMP PARALLEL DO PRIVATE(e,localCellnodeID,myCoords) do n = 1_pInt,Ncellnodes ! loop over cell nodes e = mesh_cellnodeParent(1,n) localCellnodeID = mesh_cellnodeParent(2,n) myCoords = 0.0_pReal do m = 1_pInt,theMesh%elem%nNodes myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) & * theMesh%elem%cellNodeParentNodeWeights(m,localCellnodeID) enddo mesh_build_cellnodes(1:3,n) = myCoords / sum(theMesh%elem%cellNodeParentNodeWeights(:,localCellnodeID)) enddo !$OMP END PARALLEL DO end function mesh_build_cellnodes !-------------------------------------------------------------------------------------------------- !> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume' !> @details The IP volume is calculated differently depending on the cell type. !> 2D cells assume an element depth of one in order to calculate the volume. !> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal !> shape with a cell face as basis and the central ip at the tip. This subvolume is !> calculated as an average of four tetrahedals with three corners on the cell face !> and one corner at the central ip. !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipVolumes use math, only: & math_volTetrahedron, & math_areaTriangle implicit none integer(pInt) :: e,t,g,c,i,m,f,n real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume allocate(mesh_ipVolume(theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal) !$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume) do e = 1_pInt,theMesh%nElems ! loop over cpElems select case (theMesh%elem%cellType) case (1_pInt) ! 2D 3node forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & mesh_cellnode(1:3,mesh_cell(2,i,e)), & mesh_cellnode(1:3,mesh_cell(3,i,e))) case (2_pInt) ! 2D 4node forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices mesh_cellnode(1:3,mesh_cell(2,i,e)), & mesh_cellnode(1:3,mesh_cell(3,i,e))) & + math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), & mesh_cellnode(1:3,mesh_cell(4,i,e)), & mesh_cellnode(1:3,mesh_cell(1,i,e))) case (3_pInt) ! 3D 4node forall (i = 1_pInt:theMesh%elem%nIPs) & ! loop over ips=cells in this element mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), & mesh_cellnode(1:3,mesh_cell(2,i,e)), & mesh_cellnode(1:3,mesh_cell(3,i,e)), & mesh_cellnode(1:3,mesh_cell(4,i,e))) case (4_pInt) c = theMesh%elem%cellType ! 3D 8node m = FE_NcellnodesPerCellface(c) do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element subvolume = 0.0_pReal forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) & subvolume(n,f) = math_volTetrahedron(& mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), & mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), & mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), & mesh_ipCoordinates(1:3,i,e)) mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two enddo end select enddo !$OMP END PARALLEL DO end subroutine mesh_build_ipVolumes !-------------------------------------------------------------------------------------------------- !> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates' ! Called by all solvers in mesh_init in order to initialize the ip coordinates. ! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus, ! so no need to use this subroutine anymore; Marc however only provides nodal displacements, ! so in this case the ip coordinates are always calculated on the basis of this subroutine. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES, ! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME. ! HAS TO BE CHANGED IN A LATER VERSION. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipCoordinates implicit none integer(pInt) :: e,c,i,n real(pReal), dimension(3) :: myCoords if (.not. allocated(mesh_ipCoordinates)) & allocate(mesh_ipCoordinates(3,theMesh%elem%nIPs,theMesh%nElems),source=0.0_pReal) !$OMP PARALLEL DO PRIVATE(c,myCoords) do e = 1_pInt,theMesh%nElems ! loop over cpElems c = theMesh%elem%cellType do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element myCoords = 0.0_pReal do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e)) enddo mesh_ipCoordinates(1:3,i,e) = myCoords / real(FE_NcellnodesPerCell(c),pReal) enddo enddo !$OMP END PARALLEL DO end subroutine mesh_build_ipCoordinates !-------------------------------------------------------------------------------------------------- !> @brief Calculates cell center coordinates. !-------------------------------------------------------------------------------------------------- pure function mesh_cellCenterCoordinates(ip,el) implicit none integer(pInt), intent(in) :: el, & !< element number ip !< integration point number real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell integer(pInt) :: c,n c = theMesh%elem%cellType mesh_cellCenterCoordinates = 0.0_pReal do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el)) enddo mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / real(FE_NcellnodesPerCell(c),pReal) end function mesh_cellCenterCoordinates !-------------------------------------------------------------------------------------------------- !> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal' !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipAreas use math, only: & math_crossproduct implicit none integer(pInt) :: e,t,g,c,i,f,n,m real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals real(pReal), dimension(3) :: normal allocate(mesh_ipArea(theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal) allocate(mesh_ipAreaNormal(3_pInt,theMesh%elem%nIPneighbors,theMesh%elem%nIPs,theMesh%nElems), source=0.0_pReal) !$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals) do e = 1_pInt,theMesh%nElems ! loop over cpElems c = theMesh%elem%cellType select case (c) case (1_pInt,2_pInt) ! 2D 3 or 4 node do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e)) normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector normal(3) = 0.0_pReal mesh_ipArea(f,i,e) = norm2(normal) mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal enddo enddo case (3_pInt) ! 3D 4node do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e)) normal = math_crossproduct(nodePos(1:3,2) - nodePos(1:3,1), & nodePos(1:3,3) - nodePos(1:3,1)) mesh_ipArea(f,i,e) = norm2(normal) mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal enddo enddo case (4_pInt) ! 3D 8node ! for this cell type we get the normal of the quadrilateral face as an average of ! four normals of triangular subfaces; since the face consists only of two triangles, ! the sum has to be divided by two; this whole prcedure tries to compensate for ! probable non-planar cell surfaces m = FE_NcellnodesPerCellface(c) do i = 1_pInt,theMesh%elem%nIPs ! loop over ips=cells in this element do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e)) forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & normals(1:3,n) = 0.5_pReal & * math_crossproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), & nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n)) normal = 0.5_pReal * sum(normals,2) mesh_ipArea(f,i,e) = norm2(normal) mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) enddo enddo end select enddo !$OMP END PARALLEL DO end subroutine mesh_build_ipAreas !-------------------------------------------------------------------------------------------------- !> @brief get properties of different types of finite elements !> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_subNodeOnIPFace !-------------------------------------------------------------------------------------------------- subroutine mesh_build_FEdata implicit none integer(pInt) :: me allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes), source=0_pInt) ! *** FE_cellface *** me = 0_pInt me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5) reshape(int([& 2,3, & 3,1, & 1,2 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9) reshape(int([& 2,3, & 4,1, & 3,4, & 1,2 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10) reshape(int([& 1,3,2, & 1,2,4, & 2,3,4, & 1,4,3 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12) reshape(int([& 2,3,7,6, & 4,1,5,8, & 3,4,8,7, & 1,2,6,5, & 5,6,7,8, & 1,4,3,2 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) end subroutine mesh_build_FEdata end module mesh