! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !################################################################################################## !* $Id$ !################################################################################################## ! Material subroutine for BVP solution using spectral method ! ! Run 'DAMASK_spectral.exe --help' to get usage hints ! ! written by P. Eisenlohr, ! F. Roters, ! L. Hantcherli, ! W.A. Counts, ! D.D. Tjahjanto, ! C. Kords, ! M. Diehl, ! R. Lebensohn ! ! MPI fuer Eisenforschung, Duesseldorf !################################################################################################## ! used modules !################################################################################################## program DAMASK_spectral_AL use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use DAMASK_interface use prec, only: pInt, pReal, DAMASK_NaN use IO use debug, only: debug_spectral, & debug_levelBasic, & debug_spectralRestart, & debug_spectralFFTW use math use CPFEM, only: CPFEM_general, CPFEM_initAll use FEsolving, only: restartWrite, restartInc use numerics, only: err_div_tol, err_stress_tolrel, rotation_tol, itmax, itmin, & memory_efficient, update_gamma, DAMASK_NumThreadsInt, & fftw_planner_flag, fftw_timelimit use homogenization, only: materialpoint_sizeResults, materialpoint_results !$ use OMP_LIB ! the openMP function library !################################################################################################## ! variable declaration !################################################################################################## implicit none !-------------------------------------------------------------------------------------------------- ! variables to read from load case and geom file real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file logical, dimension(9) :: temp_maskVector integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress (1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency 1_pInt, & ! dropguessing maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values myUnit = 234_pInt integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing integer(pInt) :: headerLength,& N_l = 0_pInt,& N_t = 0_pInt,& N_n = 0_pInt,& N_Fdot = 0_pInt character(len=1024) :: path, line, keyword logical :: gotResolution = .false.,& gotDimension = .false.,& gotHomogenization = .false. !-------------------------------------------------------------------------------------------------- ! variable storing information from load case file type bc_type real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient P = 0.0_pReal, & ! stress BC (if applicable) rotation = math_I3 ! rotation of BC (if applicable) real(pReal) :: time = 0.0_pReal, & ! length of increment temperature = 300.0_pReal ! isothermal starting conditions integer(pInt) :: incs = 0_pInt, & ! number of increments outputfrequency = 1_pInt, & ! frequency of result writes restartfrequency = 0_pInt, & ! frequency of restart writes logscale = 0_pInt ! linear/logaritmic time inc flag logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase velGradApplied = .false. ! decide wether velocity gradient or fdot is given logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions maskStress = .false. ! mask of stress boundary conditions logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions end type type(bc_type), allocatable, dimension(:) :: bc !-------------------------------------------------------------------------------------------------- ! variables storing information from geom file real(pReal) :: wgt real(pReal), dimension(3) :: geomdim = 0.0_pReal ! physical dimension of volume element per direction integer(pInt) :: Npoints,& ! number of Fourier points homog ! homogenization scheme used integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction integer(pInt) :: res1_red ! to store res(1)/2 +1 !-------------------------------------------------------------------------------------------------- ! stress, stiffness and compliance average etc. real(pReal), dimension(3,3) :: P_av = 0.0_pReal, P_star_av = 0.0_pReal, P, & F_aim = math_I3, F_aim_lastInc = math_I3, lambda_av, & mask_stress, mask_defgrad, deltaF, F_star_av, & F_aim_lab ! quantities rotated to other coordinate system real(pReal), dimension(3,3,3,3) :: dPdF, C_inc0, C=0.0_pReal, S_lastInc, C_lastInc ! stiffness and compliance real(pReal), dimension(6) :: sigma ! cauchy stress real(pReal), dimension(6,6) :: dsde ! small strain stiffness real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC) integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs !-------------------------------------------------------------------------------------------------- ! pointwise data type(C_PTR) :: tensorField ! fields in real an fourier space real(pReal), dimension(:,:,:,:,:), pointer :: lambda_real, F_real ! fields in real space (pointer) complex(pReal), dimension(:,:,:,:,:), pointer :: lambda_fourier, F_fourier ! fields in fourier space (pointer) real(pReal), dimension(:,:,:,:,:), allocatable :: F_lastInc, F_star, lambda real(pReal), dimension(:,:,:,:), allocatable :: coordinates real(pReal), dimension(:,:,:), allocatable :: temperature !-------------------------------------------------------------------------------------------------- ! variables storing information for spectral method and FFTW type(C_PTR) :: plan_correction, plan_lambda ! plans for fftw real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator integer(pInt), dimension(3) :: k_s !-------------------------------------------------------------------------------------------------- ! loop variables, convergence etc. real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval real(pReal) :: guessmode, err_stress, err_stress_tol, err_f, err_p, err_crit, err_f_point, pstress_av_L2, err_div_rms, err_div real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal complex(pReal), dimension(3,3) :: temp33_Complex real(pReal), dimension(3,3) :: temp33_Real integer(pInt) :: i, j, k, l, u, v, w, errorID = 0_pInt, ierr integer(pInt) :: N_Loadcases, loadcase, inc, iter, ielem, CPFEM_mode, & totalIncsCounter = 0_pInt,notConvergedCounter = 0_pInt, convergedCounter = 0_pInt logical :: errmatinv character(len=6) :: loadcase_string !-------------------------------------------------------------------------------------------------- !variables controlling debugging logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW !################################################################################################## ! reading of information from load case file and geometry file !################################################################################################## !$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS open (6, encoding='UTF-8') call DAMASK_interface_init print '(a)', '' print '(a)', ' <<<+- DAMASK_spectral_AL init -+>>>' print '(a)', ' $Id$' #include "compilation_info.f90" print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName()) print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName()) print '(a)', '' !-------------------------------------------------------------------------------------------------- ! reading the load case file and allocate data structure containing load cases path = getLoadcaseName() call IO_open_file(myUnit,path) rewind(myUnit) do read(myUnit,'(a1024)',END = 100) line if (IO_isBlank(line)) cycle ! skip empty lines positions = IO_stringPos(line,maxNchunksLoadcase) do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase select case (IO_lc(IO_stringValue(line,positions,i))) case('l','velocitygrad','velgrad','velocitygradient') N_l = N_l + 1_pInt case('fdot','dotf') N_Fdot = N_Fdot + 1_pInt case('t','time','delta') N_t = N_t + 1_pInt case('n','incs','increments','steps','logincs','logsteps') N_n = N_n + 1_pInt end select enddo ! count all identifiers to allocate memory and do sanity check enddo 100 N_Loadcases = N_n if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check call IO_error(error_ID=837_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase !if (N_Loadcases>9000_pInt) stop !discuss with Philip, stop code trouble. suggesting warning allocate (bc(N_Loadcases)) !-------------------------------------------------------------------------------------------------- ! reading the load case and assign values to the allocated data structure rewind(myUnit) loadcase = 0_pInt do read(myUnit,'(a1024)',END = 101) line if (IO_isBlank(line)) cycle ! skip empty lines loadcase = loadcase + 1_pInt positions = IO_stringPos(line,maxNchunksLoadcase) do j = 1_pInt,maxNchunksLoadcase select case (IO_lc(IO_stringValue(line,positions,j))) case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix bc(loadcase)%velGradApplied = & (IO_lc(IO_stringValue(line,positions,j)) == 'l'.or. & ! in case of given L, set flag to true IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad'.or.& IO_lc(IO_stringValue(line,positions,j)) == 'velgrad'.or.& IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient') temp_valueVector = 0.0_pReal temp_maskVector = .false. forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*' do k = 1_pInt,9_pInt if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k) enddo bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3])) bc(loadcase)%deformation = math_plain9to33(temp_valueVector) case('p','pk1','piolakirchhoff','stress') temp_valueVector = 0.0_pReal forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) =& IO_stringValue(line,positions,j+k) /= '*' do k = 1_pInt,9_pInt if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) =& IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%P matrix enddo bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3])) bc(loadcase)%P = math_plain9to33(temp_valueVector) case('t','time','delta') ! increment time bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt) case('temp','temperature') ! starting temperature bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt) case('n','incs','increments','steps') ! number of increments bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt) case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling) bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt) bc(loadcase)%logscale = 1_pInt case('f','freq','frequency','outputfreq') ! frequency of result writings bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt) case('r','restart','restartwrite') ! frequency of writing restart information bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt)) case('guessreset','dropguessing') bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory case('euler') ! rotation of loadcase given in euler angles u = 0_pInt ! assuming values given in radians v = 1_pInt ! assuming keyword indicating degree/radians select case (IO_lc(IO_stringValue(line,positions,j+1_pInt))) case('deg','degree') u = 1_pInt ! for conversion from degree to radian case('rad','radian') case default v = 0_pInt ! immediately reading in angles, assuming radians end select forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = & IO_floatValue(line,positions,j+v+k) * real(u,pReal) * inRad bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1)) case('rotation','rot') ! assign values for the rotation of loadcase matrix temp_valueVector = 0.0_pReal forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k) bc(loadcase)%rotation = math_plain9to33(temp_valueVector) end select enddo; enddo 101 close(myUnit) !-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init ! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry) call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt) if (update_gamma .and. .not. memory_efficient) call IO_error(error_ID = 847_pInt) !-------------------------------------------------------------------------------------------------- ! read header of geom file to get size information. complete geom file is intepretated by mesh.f90 path = getModelName() call IO_open_file(myUnit,trim(path)//InputFileExtension) rewind(myUnit) read(myUnit,'(a1024)') line positions = IO_stringPos(line,2_pInt) keyword = IO_lc(IO_StringValue(line,positions,2_pInt)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt else call IO_error(error_ID=842_pInt) endif rewind(myUnit) do i = 1_pInt, headerLength read(myUnit,'(a1024)') line positions = IO_stringPos(line,maxNchunksGeom) select case ( IO_lc(IO_StringValue(line,positions,1)) ) case ('dimension') gotDimension = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,positions,j))) case('x') geomdim(1) = IO_floatValue(line,positions,j+1_pInt) case('y') geomdim(2) = IO_floatValue(line,positions,j+1_pInt) case('z') geomdim(3) = IO_floatValue(line,positions,j+1_pInt) end select enddo case ('homogenization') gotHomogenization = .true. homog = IO_intValue(line,positions,2_pInt) case ('resolution') gotResolution = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,positions,j))) case('a') res(1) = IO_intValue(line,positions,j+1_pInt) case('b') res(2) = IO_intValue(line,positions,j+1_pInt) case('c') res(3) = IO_intValue(line,positions,j+1_pInt) end select enddo end select enddo close(myUnit) !-------------------------------------------------------------------------------------------------- ! sanity checks of geometry parameters if (.not.(gotDimension .and. gotHomogenization .and. gotResolution))& call IO_error(error_ID = 845_pInt) if (any(geomdim<=0.0_pReal)) call IO_error(error_ID = 802_pInt) if(mod(res(1),2_pInt)/=0_pInt .or.& mod(res(2),2_pInt)/=0_pInt .or.& (mod(res(3),2_pInt)/=0_pInt .and. res(3)/= 1_pInt)) call IO_error(error_ID = 803_pInt) !-------------------------------------------------------------------------------------------------- ! variables derived from resolution res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c) Npoints = res(1)*res(2)*res(3) wgt = 1.0_pReal/real(Npoints, pReal) !-------------------------------------------------------------------------------------------------- ! output of geometry print '(a)', '' print '(a)', '#############################################################' print '(a)', 'DAMASK spectral_AL:' print '(a)', 'The AL spectral method boundary value problem solver for' print '(a)', 'the Duesseldorf Advanced Material Simulation Kit' print '(a)', '#############################################################' print '(a,a)', 'geometry file: ',trim(path)//'.geom' print '(a)', '=============================================================' print '(a,3(i12 ))','resolution a b c:', res print '(a,3(f12.5))','dimension x y z:', geomdim print '(a,i5)','homogenization: ',homog print '(a)', '#############################################################' print '(a,a)', 'loadcase file: ',trim(getLoadcaseName()) !-------------------------------------------------------------------------------------------------- ! consistency checks and output of load case bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase do loadcase = 1_pInt, N_Loadcases write (loadcase_string, '(i6)' ) loadcase print '(a)', '=============================================================' print '(a,i6)', 'loadcase: ', loadcase if (.not. bc(loadcase)%followFormerTrajectory) print '(a)', 'drop guessing along trajectory' if (bc(loadcase)%velGradApplied) then do j = 1_pInt, 3_pInt if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. & any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined enddo print '(a)','velocity gradient:' else print '(a)','deformation gradient rate:' endif write (*,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),& reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation)) write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'stress / GPa:',& 1e-9_pReal*merge(math_transpose33(bc(loadcase)%P),& reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress)) if (any(bc(loadcase)%rotation /= math_I3)) & write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',& math_transpose33(bc(loadcase)%rotation) print '(a,f12.6)','temperature:',bc(loadcase)%temperature print '(a,f12.6)','time: ',bc(loadcase)%time print '(a,i5)' ,'increments: ',bc(loadcase)%incs print '(a,i5)','output frequency: ',bc(loadcase)%outputfrequency print '(a,i5)','restart frequency: ',bc(loadcase)%restartfrequency if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. & reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) & errorID = 838_pInt ! no rotation is allowed by stress BC if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))& -math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))& .or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)& errorID = 846_pInt ! given rotation matrix contains strain if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string) enddo !-------------------------------------------------------------------------------------------------- ! debugging parameters debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt debugFFTW = iand(debug_spectral,debug_spectralFFTW) > 0_pInt debugGeneral = .true. !################################################################################################## ! initialization !################################################################################################## !-------------------------------------------------------------------------------------------------- ! allocate more memory allocate (F_star ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal) allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal) allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal) allocate (temperature( res(1), res(2),res(3)), source = bc(1)%temperature) ! start out isothermally tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8) call c_f_pointer(tensorField, lambda_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation call c_f_pointer(tensorField, F_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation call c_f_pointer(tensorField, lambda_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation call c_f_pointer(tensorField, F_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation !-------------------------------------------------------------------------------------------------- ! general initialization of fftw (see manual on fftw.org for more details) if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C #ifdef _OPENMP if(DAMASK_NumThreadsInt > 0_pInt) then ierr = fftw_init_threads() if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt) call fftw_plan_with_nthreads(DAMASK_NumThreadsInt) endif #endif call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation !-------------------------------------------------------------------------------------------------- ! creating plans plan_lambda = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order lambda_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order 1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions lambda_fourier,[ res(3),res(2) ,res1_red],& 1, res(3)*res(2)* res1_red,fftw_planner_flag) plan_correction = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,& F_fourier,[ res(3),res(2) ,res1_red],& 1, res(3)*res(2)* res1_red,& F_real,[ res(3),res(2) ,res(1)+2_pInt],& 1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag) if (debugGeneral) print '(a)' , 'FFTW initialized' !-------------------------------------------------------------------------------------------------- ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) and remove the given highest frequencies do k = 1_pInt, res(3) k_s(3) = k - 1_pInt if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3) do j = 1_pInt, res(2) k_s(2) = j - 1_pInt if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2) do i = 1_pInt, res1_red k_s(1) = i - 1_pInt xi(1:3,i,j,k) = real(k_s, pReal)/geomdim enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! calculate the gamma operator if(memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal) else ! precalculation of gamma_hat field allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal) do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) & xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k) forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) & temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad) temp33_Real = math_inv33(temp33_Real) forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)& gamma_hat(i,j,k, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w) endif enddo; enddo; enddo gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 endif !-------------------------------------------------------------------------------------------------- ! init fields to no deformation ielem = 0_pInt do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt F_real(i,j,k,1:3,1:3) = math_I3; F_lastInc(i,j,k,1:3,1:3) = math_I3 coordinates(i,j,k,1:3) = geomdim/real(res * [i,j,k], pReal) - geomdim/real(2_pInt*res,pReal) call CPFEM_general(3_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),& 0.0_pReal,ielem,1_pInt,sigma,dsde,temp33_Real ,dPdF) enddo; enddo; enddo ielem = 0_pInt do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),& 0.0_pReal,ielem,1_pInt,sigma,dsde,temp33_Real ,dPdF) C = C + dPdF enddo; enddo; enddo C_inc0 = C * wgt ! linear reference material stiffness !-------------------------------------------------------------------------------------------------- ! possible restore deformation gradient from saved state if (restartInc > 1_pInt) then ! using old values from file if (debugRestart) print '(a,i6,a)' , 'Reading values of increment ',& restartInc - 1_pInt,' from file' call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',& trim(getSolverJobName()),size(F_star)) read (777,rec=1) F_star close (777) F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_star F_lastInc = F_star F_aim = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) F_aim = F_aim + F_real(i,j,k,1:3,1:3) ! calculating old average deformation enddo; enddo; enddo F_aim = F_aim * wgt F_aim_lastInc = F_aim endif !-------------------------------------------------------------------------------------------------- ! write header of output file open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())& //'.spectralOut',form='UNFORMATTED',status='REPLACE') write(538) 'load', trim(getLoadcaseName()) write(538) 'workingdir', trim(getSolverWorkingDirectoryName()) write(538) 'geometry', trim(getSolverJobName())//InputFileExtension write(538) 'resolution', res write(538) 'dimension', geomdim write(538) 'materialpoint_sizeResults', materialpoint_sizeResults write(538) 'loadcases', N_Loadcases write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase write(538) 'logscales', bc(1:N_Loadcases)%logscale write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc write(538) 'eoh' ! end of header write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results if (debugGeneral) print '(a)' , 'Header of result file written out' !################################################################################################## ! Loop over loadcases defined in the loadcase file !################################################################################################## do loadcase = 1_pInt, N_Loadcases time0 = time ! loadcase start time if (bc(loadcase)%followFormerTrajectory .and. & (restartInc < totalIncsCounter .or. & restartInc > totalIncsCounter+bc(loadcase)%incs) ) then ! continue to guess along former trajectory where applicable guessmode = 1.0_pReal else guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc endif !-------------------------------------------------------------------------------------------------- ! arrays for mixed boundary conditions mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation) mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress) size_reduced = int(count(bc(loadcase)%maskStressVector), pInt) allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal) allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal) !################################################################################################## ! loop oper incs defined in input file for current loadcase !################################################################################################## do inc = 1_pInt, bc(loadcase)%incs totalIncsCounter = totalIncsCounter + 1_pInt if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding) !-------------------------------------------------------------------------------------------------- ! forwarding time timeinc_old = timeinc if (bc(loadcase)%logscale == 0_pInt) then ! linear scale timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used else if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd else ! not-1st inc of 1st loadcase of logarithmic scale timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal)) endif else ! not-1st loadcase of logarithmic scale timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/& real(bc(loadcase)%incs ,pReal))& -(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/& real(bc(loadcase)%incs ,pReal)) ) endif endif time = time + timeinc if (bc(loadcase)%velGradApplied) then ! calculate deltaF from given L and current F deltaF = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim) else ! deltaF = fDot *timeinc where applicable deltaF = timeinc * mask_defgrad * bc(loadcase)%deformation endif !-------------------------------------------------------------------------------------------------- ! coordinates at beginning of inc !call deformed_fft(res,geomdim,1.0_pReal,F_real(1:res(1),1:res(2),1:res(3),1:3,1:3),coordinates)! calculate current coordinates !-------------------------------------------------------------------------------------------------- ! winding forward of deformation aim in loadcase system temp33_Real = F_aim F_aim = F_aim & + guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old & + deltaF F_aim_lastInc = temp33_Real F_star_av = F_aim !-------------------------------------------------------------------------------------------------- ! Initialize / Update lambda to useful value temp33_real = math_mul3333xx33(C*wgt, F_aim-F_aim_lastInc) P_av = P_av + temp33_real do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) lambda(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) + temp33_real enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! update local deformation gradient deltaF = math_rotate_backward33(deltaF,bc(loadcase)%rotation) do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) temp33_Real = F_real(i,j,k,1:3,1:3) F_real(i,j,k,1:3,1:3) = F_real(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon + guessmode * (F_real(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing... *timeinc/timeinc_old & + (1.0_pReal-guessmode) * deltaF ! if not guessing, use prescribed average deformation where applicable F_lastInc(i,j,k,1:3,1:3) = temp33_Real enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- !Initialize pointwise data for AL scheme: ToDo: good choice? F_star(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) !-------------------------------------------------------------------------------------------------- ! calculate reduced compliance if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied C_lastInc = math_rotate_forward3333(C*wgt,bc(loadcase)%rotation) ! calculate stiffness from former inc c_prev99 = math_Plain3333to99(C_lastInc) k = 0_pInt ! build reduced stiffness do v = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(v)) then k = k + 1_pInt j = 0_pInt do u = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(u)) then j = j + 1_pInt c_reduced(k,j) = c_prev99(v,u) endif; enddo; endif; enddo call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness if(errmatinv) call IO_error(error_ID=400_pInt) s_prev99 = 0.0_pReal ! build full compliance k = 0_pInt do v = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(v)) then k = k + 1_pInt j = 0_pInt do u = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(u)) then j = j + 1_pInt s_prev99(v,u) = s_reduced(k,j) endif; enddo; endif; enddo S_lastInc = (math_Plain99to3333(s_prev99)) endif !-------------------------------------------------------------------------------------------------- ! report begin of new increment print '(a)', '##################################################################' print '(A,I5.5,A,es12.5)', 'Increment ', totalIncsCounter, ' Time ',time guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase CPFEM_mode = 1_pInt ! winding forward iter = 0_pInt err_crit = huge(err_div_tol) ! go into loop !################################################################################################## ! convergence loop (looping over iterations) !################################################################################################## do while((iter < itmax .and. (err_div > err_div_tol .or. err_stress > err_stress_tol .or. err_crit > 5.0e-4))& .or. iter < itmin) iter = iter + 1_pInt !-------------------------------------------------------------------------------------------------- ! report begin of new iteration print '(a)', '' print '(a)', '==================================================================' print '(5(a,i6.6))', 'Loadcase ',loadcase,' Increment ',inc,'/',bc(loadcase)%incs,& ' @ Iteration ',iter,'/',itmax !-------------------------------------------------------------------------------------------------- ! stress BC handling if(size_reduced > 0_pInt) then ! calculate stress BC if applied err_stress = maxval(abs(mask_stress * (P_av - bc(loadcase)%P))) ! maximum deviaton (tensor norm not applicable) write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'stress deviation =',& math_transpose33(mask_stress * (P_av - bc(loadcase)%P))/1.0e6_pReal F_aim = F_aim + math_mul3333xx33(S_lastInc,bc(loadcase)%P- P_av) err_stress_tol = maxval(abs(P_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent else err_stress_tol = + huge(1.0_pReal) endif F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation) write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F aim =',& math_transpose33(F_aim) !-------------------------------------------------------------------------------------------------- ! doing Fourier transform print '(a)', '... spectral method ...............................................' lambda_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = lambda(1:res(1),1:res(2),1:res(3),1:3,1:3) call fftw_execute_dft_r2c(plan_lambda,lambda_real,lambda_fourier) lambda_fourier( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)& = cmplx(0.0_pReal,0.0_pReal,pReal) lambda_fourier(1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)& = cmplx(0.0_pReal,0.0_pReal,pReal) if(res(3)>1_pInt) & lambda_fourier(1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)& = cmplx(0.0_pReal,0.0_pReal,pReal) !-------------------------------------------------------------------------------------------------- ! calculating RMS divergence criterion in Fourier space pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(lambda_av,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html) math_transpose33(lambda_av))))) err_div_RMS = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2) do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice. err_div_RMS = err_div_RMS & + 2.0_pReal*(sum (real(math_mul33x3_complex(lambda_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector +sum(aimag(math_mul33x3_complex(lambda_fourier(i,j,k,1:3,1:3),& xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)) enddo err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart + sum( real(math_mul33x3_complex(lambda_fourier(1 ,j,k,1:3,1:3),& xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)& + sum(aimag(math_mul33x3_complex(lambda_fourier(1 ,j,k,1:3,1:3),& xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)& + sum( real(math_mul33x3_complex(lambda_fourier(res1_red,j,k,1:3,1:3),& xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)& + sum(aimag(math_mul33x3_complex(lambda_fourier(res1_red,j,k,1:3,1:3),& xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal) enddo; enddo err_div_RMS = sqrt(err_div_RMS)*wgt err_div = err_div_RMS/pstress_av_L2 !-------------------------------------------------------------------------------------------------- ! using gamma operator to update F if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) & xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k) forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) & temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad) temp33_Real = math_inv33(temp33_Real) forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)& gamma_hat(1,1,1, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w) forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) & temp33_Complex(l,u) = sum(gamma_hat(1,1,1, l,u, 1:3,1:3) *& lambda_fourier(i,j,k,1:3,1:3)) F_fourier(i,j,k,1:3,1:3) = - temp33_Complex endif enddo; enddo; enddo else ! use precalculated gamma-operator do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red forall( u = 1_pInt:3_pInt, v = 1_pInt:3_pInt) & temp33_Complex(u,v) = sum(gamma_hat(i,j,k, u,v, 1:3,1:3) *& lambda_fourier(i,j,k,1:3,1:3)) F_fourier(i,j,k, 1:3,1:3) = - temp33_Complex enddo; enddo; enddo endif F_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab - F_star_av)*real(Npoints,pReal),0.0_pReal,pReal) !-------------------------------------------------------------------------------------------------- ! doing inverse Fourier transform call fftw_execute_dft_c2r(plan_correction,F_fourier,F_real) ! back transform of fluct deformation gradient F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) * wgt + & F_star(1:res(1),1:res(2),1:res(3),1:3,1:3) !-------------------------------------------------------------------------------------------------- ! print '(a)', '... update stress field P(F*) and update F* and λ..........................' ielem = 0_pInt do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(3_pInt,& ! collect cycle coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),& F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,& sigma,dsde, P, dPdF) enddo; enddo; enddo ielem = 0_pInt err_f = 0.0_pReal err_f_point = 0.0_pReal F_star_av = 0.0_pReal P_star_av = 0.0_pReal lambda_av = 0.0_pReal do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ielem = ielem + 1_pInt call CPFEM_general(CPFEM_mode,& coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), & F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,& sigma,dsde, P,dPdF) CPFEM_mode = 2_pInt ! winding forward temp33_Real = lambda(i,j,k,1:3,1:3) - P & + math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3)- F_star(i,j,k,1:3,1:3)) F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) + & math_mul3333xx33(math_invSym3333(C_inc0 + dPdF), temp33_Real) lambda(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) + math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3) & - F_star(i,j,k,1:3,1:3)) F_star_av = F_star_av + F_star(i,j,k,1:3,1:3) lambda_av = lambda_av + lambda(i,j,k,1:3,1:3) P_star_av = P_star_av + P temp33_real = F_star(i,j,k,1:3,1:3) - F_real(i,j,k,1:3,1:3) err_f_point = max(err_f_point, maxval(temp33_real)) err_f = max(err_f, sqrt(math_mul33xx33(temp33_real,temp33_real))) temp33_real = lambda(i,j,k,1:3,1:3) - P err_p = max(err_p, sqrt(math_mul33xx33(temp33_real,temp33_real))) enddo; enddo; enddo F_star_av = F_star_av *wgt write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F* =',& math_transpose33(F_star_av) P_star_av = P_star_av *wgt write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'P(F*) / GPa =',& math_transpose33(P_star_av) /1.e6_pReal lambda_av = lambda_av *wgt write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'λ / GPa =',& math_transpose33(lambda_av) /1.e6_pReal ! print '(a)', '... update stress field P(F) .....................................' ! ielem = 0_pInt ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! ielem = ielem + 1_pInt ! call CPFEM_general(3_pInt,& ! collect cycle ! coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),& ! F_real(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,& ! sigma,dsde,P,dPdF) ! enddo; enddo; enddo ! ielem = 0_pInt ! err_p = 0.0_pReal ! P_av =0.0_pReal ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! ielem = ielem + 1_pInt ! call CPFEM_general(2_pInt,& ! coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), & ! F_real(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,& ! sigma,dsde,P,dPdF) ! P_av = P_av + P ! temp33_real = lambda(i,j,k,1:3,1:3) - P ! err_p = max(err_p, sqrt(math_mul33xx33(temp33_real,temp33_real))) ! enddo; enddo; enddo ! P_av = math_rotate_forward33(P_av * wgt,bc(loadcase)%rotation) ! write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'P(F) / GPa =',& ! math_transpose33(P_av)/1.e6_pReal ! write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'P(F*) - P(F) =',& ! math_transpose33(P_star_av - P_av) P_av = lambda_av err_f = err_f/sqrt(math_mul33xx33(F_star_av,F_star_av)) err_p = err_p/sqrt(math_mul33xx33(P_av,P_av)) write(6,'(a,es14.7,1x)') 'error F', err_f write(6,'(a,es14.7,1x)') 'max abs err F', err_f_point write(6,'(a,es14.7,1x)') 'error P', err_p write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS write(6,'(a,es11.4)') 'error div = ',err_div write(6,'(a,es11.4)') 'error stress = ',err_stress/err_stress_tol err_crit = max(err_p, err_f) enddo ! end looping when convergency is achieved print '(a)', '' print '(a)', '==================================================================' if(err_crit > err_div_tol .or. err_stress > err_stress_tol) then print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' NOT converged' notConvergedCounter = notConvergedCounter + 1_pInt else convergedCounter = convergedCounter + 1_pInt print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' converged' endif if (mod(totalIncsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency print '(a)', '' print '(a)', '... writing results to file ......................................' write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file endif if( bc(loadcase)%restartFrequency > 0_pInt .and. & mod(inc - 1_pInt,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?) restartWrite = .true. print '(A)', 'writing converged results for restart' call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_star)) ! writing deformation gradient field to file write (777,rec=1) F_star close (777) restartInc=totalIncsCounter endif endif ! end calculation/forwarding enddo ! end looping over incs in current loadcase deallocate(c_reduced) deallocate(s_reduced) enddo ! end looping over loadcases print '(a)', '' print '(a)', '##################################################################' print '(i6.6,a,i6.6,a)', notConvergedCounter, ' out of ', & notConvergedCounter + convergedCounter, ' increments did not converge!' close(538) call fftw_destroy_plan(plan_lambda); call fftw_destroy_plan(plan_correction) call quit(0_pInt) end program DAMASK_spectral_AL !******************************************************************** ! quit subroutine to satisfy IO_error ! !******************************************************************** subroutine quit(stop_id) use prec, only: & pInt implicit none integer(pInt), intent(in) :: stop_id if (stop_id == 0_pInt) stop 0 ! normal termination if (stop_id <= 9000_pInt) then ! trigger regridding write(6,'(i4)') stop_id stop 1 endif stop 'abnormal termination of DAMASK_spectral' end subroutine