"""Functionality for generation of seed points for Voronoi or Laguerre tessellation.""" from typing import Tuple as _Tuple from scipy import spatial as _spatial import numpy as _np from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence, \ NumpyRngSeed as _NumpyRngSeed, IntCollection as _IntCollection from . import util as _util from . import grid_filters as _grid_filters def from_random(size: _FloatSequence, N_seeds: int, cells: _IntSequence = None, rng_seed: _NumpyRngSeed = None) -> _np.ndarray: """ Place seeds randomly in space. Parameters ---------- size : sequence of float, len (3) Physical size of the seeding domain. N_seeds : int Number of seeds. cells : sequence of int, len (3), optional. If given, ensures that each seed results in a grain when a standard Voronoi tessellation is performed using the given grid resolution (i.e. size/cells). rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS. Returns ------- coords : numpy.ndarray, shape (N_seeds,3) Seed coordinates in 3D space. """ size_ = _np.array(size,float) rng = _np.random.default_rng(rng_seed) if cells is None: coords = rng.random((N_seeds,3)) * size_ else: grid_coords = _grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F') coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \ + _np.broadcast_to(size_/_np.array(cells,int),(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble w/o leaving grid return coords def from_Poisson_disc(size: _FloatSequence, N_seeds: int, N_candidates: int, distance: float, periodic: bool = True, rng_seed: _NumpyRngSeed = None) -> _np.ndarray: """ Place seeds according to a Poisson disc distribution. Parameters ---------- size : sequence of float, len (3) Physical size of the seeding domain. N_seeds : int Number of seeds. N_candidates : int Number of candidates to consider for finding best candidate. distance : float Minimum acceptable distance to other seeds. periodic : bool, optional Calculate minimum distance for periodically repeated grid. rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS. Returns ------- coords : numpy.ndarray, shape (N_seeds,3) Seed coordinates in 3D space. """ rng = _np.random.default_rng(rng_seed) coords = _np.empty((N_seeds,3)) coords[0] = rng.random(3) * _np.array(size,float) s = 1 i = 0 progress = _util.ProgressBar(N_seeds+1,'',50) while s < N_seeds: i += 1 candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3)) tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \ _spatial.cKDTree(coords[:s]) distances = tree.query(candidates)[0] if distances.max() > distance: # require minimum separation i = 0 coords[s] = candidates[distances.argmax()] # maximum separation to existing point cloud s += 1 progress.update(s) if i >= 100: raise ValueError('seeding not possible') return coords def from_grid(grid, selection: _IntCollection = None, invert_selection: bool = False, average: bool = False, periodic: bool = True) -> _Tuple[_np.ndarray, _np.ndarray]: """ Create seeds from grid description. Parameters ---------- grid : damask.Grid Grid from which the material IDs are used as seeds. selection : int or collection of int, optional Material IDs to consider. invert_selection : bool, optional Consider all material IDs except those in selection. Defaults to False. average : bool, optional Seed corresponds to center of gravity of material ID cloud. periodic : bool, optional Center of gravity accounts for periodic boundaries. Returns ------- coords, materials : numpy.ndarray, shape (:,3); numpy.ndarray, shape (:) Seed coordinates in 3D space, material IDs. """ material = grid.material.reshape((-1,1),order='F') selection_ = _util.tbd(selection) mask = _np.full(grid.cells.prod(),True,dtype=bool) if selection_ is None else \ _np.isin(material,selection_,invert=invert_selection).flatten() coords = _grid_filters.coordinates0_point(grid.cells,grid.size).reshape(-1,3,order='F') if not average: return (coords[mask],material[mask]) else: materials = _np.unique(material[mask]) coords_ = _np.zeros((materials.size,3),dtype=float) for i,mat in enumerate(materials): pc = (2*_np.pi*coords[material[:,0]==mat,:]-grid.origin)/grid.size coords_[i] = grid.origin + grid.size / 2 / _np.pi * (_np.pi + _np.arctan2(-_np.average(_np.sin(pc),axis=0), -_np.average(_np.cos(pc),axis=0))) \ if periodic else \ _np.average(coords[material[:,0]==mat,:],axis=0) return (coords_,materials)