! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## !* $Id$ !************************************ !* Module: CONSTITUTIVE * !************************************ MODULE constitutive_dislotwin !* Include other modules use prec, only: pReal,pInt implicit none !* Lists of states and physical parameters character(len=*), parameter :: constitutive_dislotwin_label = 'dislotwin' character(len=18), dimension(2), parameter:: constitutive_dislotwin_listBasicSlipStates = (/'rhoEdge ', & 'rhoEdgeDip'/) character(len=18), dimension(1), parameter:: constitutive_dislotwin_listBasicTwinStates = (/'twinFraction'/) character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentSlipStates =(/'invLambdaSlip ', & 'invLambdaSlipTwin', & 'meanFreePathSlip ', & 'tauSlipThreshold '/) character(len=18), dimension(4), parameter:: constitutive_dislotwin_listDependentTwinStates =(/'invLambdaTwin ', & 'meanFreePathTwin', & 'tauTwinThreshold', & 'twinVolume '/) real(pReal), parameter :: kB = 1.38e-23_pReal ! Boltzmann constant in J/Kelvin !* Definition of global variables integer(pInt), dimension(:), allocatable :: constitutive_dislotwin_sizeDotState, & ! number of dotStates constitutive_dislotwin_sizeState, & ! total number of microstructural state variables constitutive_dislotwin_sizePostResults ! cumulative size of post results integer(pInt), dimension(:,:), allocatable, target :: constitutive_dislotwin_sizePostResult ! size of each post result output character(len=64), dimension(:,:), allocatable, target :: constitutive_dislotwin_output ! name of each post result output integer(pInt), dimension(:), allocatable :: constitutive_dislotwin_Noutput ! number of outputs per instance of this plasticity character(len=32), dimension(:), allocatable :: constitutive_dislotwin_structureName ! name of the lattice structure integer(pInt), dimension(:), allocatable :: constitutive_dislotwin_structure, & ! number representing the kind of lattice structure constitutive_dislotwin_totalNslip, & ! total number of active slip systems for each instance constitutive_dislotwin_totalNtwin ! total number of active twin systems for each instance integer(pInt), dimension(:,:), allocatable :: constitutive_dislotwin_Nslip, & ! number of active slip systems for each family and instance constitutive_dislotwin_Ntwin ! number of active twin systems for each family and instance real(pReal), dimension(:), allocatable :: constitutive_dislotwin_CoverA, & ! c/a ratio for hex type lattice constitutive_dislotwin_C11, & ! C11 element in elasticity matrix constitutive_dislotwin_C12, & ! C12 element in elasticity matrix constitutive_dislotwin_C13, & ! C13 element in elasticity matrix constitutive_dislotwin_C33, & ! C33 element in elasticity matrix constitutive_dislotwin_C44, & ! C44 element in elasticity matrix constitutive_dislotwin_Gmod, & ! shear modulus constitutive_dislotwin_CAtomicVolume, & ! atomic volume in Bugers vector unit constitutive_dislotwin_D0, & ! prefactor for self-diffusion coefficient constitutive_dislotwin_Qsd, & ! activation energy for dislocation climb constitutive_dislotwin_GrainSize, & ! grain size constitutive_dislotwin_p, & ! p-exponent in glide velocity constitutive_dislotwin_q, & ! q-exponent in glide velocity constitutive_dislotwin_MaxTwinFraction, & ! maximum allowed total twin volume fraction constitutive_dislotwin_r, & ! r-exponent in twin nucleation rate constitutive_dislotwin_CEdgeDipMinDistance, & ! constitutive_dislotwin_Cmfptwin, & ! constitutive_dislotwin_Cthresholdtwin, & ! constitutive_dislotwin_SolidSolutionStrength, & ! Strength due to elements in solid solution constitutive_dislotwin_L0, & ! Length of twin nuclei in Burgers vectors constitutive_dislotwin_sbResistance, & ! FIXED (for now) value for shearband resistance (might become an internal state variable at some point) constitutive_dislotwin_sbVelocity, & ! FIXED (for now) value for shearband velocity_0 constitutive_dislotwin_sbQedge, & ! FIXED (for now) value for shearband systems Qedge constitutive_dislotwin_SFE_0K, & ! stacking fault energy at zero K constitutive_dislotwin_dSFE_dT, & ! temperature dependance of stacking fault energy constitutive_dislotwin_aTolRho ! absolute tolerance for integration of dislocation density real(pReal), dimension(:,:,:), allocatable :: constitutive_dislotwin_Cslip_66 ! elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:), allocatable :: constitutive_dislotwin_Ctwin_66 ! twin elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:,:), allocatable :: constitutive_dislotwin_Cslip_3333 ! elasticity matrix for each instance real(pReal), dimension(:,:,:,:,:,:), allocatable :: constitutive_dislotwin_Ctwin_3333 ! twin elasticity matrix for each instance real(pReal), dimension(:,:), allocatable :: constitutive_dislotwin_rhoEdge0, & ! initial edge dislocation density per slip system for each family and instance constitutive_dislotwin_rhoEdgeDip0, & ! initial edge dipole density per slip system for each family and instance constitutive_dislotwin_burgersPerSlipFamily, & ! absolute length of burgers vector [m] for each slip family and instance constitutive_dislotwin_burgersPerSlipSystem, & ! absolute length of burgers vector [m] for each slip system and instance constitutive_dislotwin_burgersPerTwinFamily, & ! absolute length of burgers vector [m] for each twin family and instance constitutive_dislotwin_burgersPerTwinSystem, & ! absolute length of burgers vector [m] for each twin system and instance constitutive_dislotwin_QedgePerSlipFamily, & ! activation energy for glide [J] for each slip family and instance constitutive_dislotwin_QedgePerSlipSystem, & ! activation energy for glide [J] for each slip system and instance constitutive_dislotwin_v0PerSlipFamily, & ! dislocation velocity prefactor [m/s] for each family and instance constitutive_dislotwin_v0PerSlipSystem, & ! dislocation velocity prefactor [m/s] for each slip system and instance constitutive_dislotwin_Ndot0PerTwinFamily, & ! twin nucleation rate [1/m³s] for each twin family and instance constitutive_dislotwin_Ndot0PerTwinSystem, & ! twin nucleation rate [1/m³s] for each twin system and instance constitutive_dislotwin_twinsizePerTwinFamily, & ! twin thickness [m] for each twin family and instance constitutive_dislotwin_twinsizePerTwinSystem, & ! twin thickness [m] for each twin system and instance constitutive_dislotwin_CLambdaSlipPerSlipFamily, & ! Adj. parameter for distance between 2 forest dislocations for each slip family and instance constitutive_dislotwin_CLambdaSlipPerSlipSystem, & ! Adj. parameter for distance between 2 forest dislocations for each slip system and instance constitutive_dislotwin_interaction_SlipSlip, & ! coefficients for slip-slip interaction for each interaction type and instance constitutive_dislotwin_interaction_SlipTwin, & ! coefficients for slip-twin interaction for each interaction type and instance constitutive_dislotwin_interaction_TwinSlip, & ! coefficients for twin-slip interaction for each interaction type and instance constitutive_dislotwin_interaction_TwinTwin ! coefficients for twin-twin interaction for each interaction type and instance real(pReal), dimension(:,:,:), allocatable :: constitutive_dislotwin_interactionMatrix_SlipSlip, & ! interaction matrix of the different slip systems for each instance constitutive_dislotwin_interactionMatrix_SlipTwin, & ! interaction matrix of slip systems with twin systems for each instance constitutive_dislotwin_interactionMatrix_TwinSlip, & ! interaction matrix of twin systems with slip systems for each instance constitutive_dislotwin_interactionMatrix_TwinTwin, & ! interaction matrix of the different twin systems for each instance constitutive_dislotwin_forestProjectionEdge ! matrix of forest projections of edge dislocations for each instance real(pReal), dimension(:,:,:,:,:), allocatable :: constitutive_dislotwin_sbSv CONTAINS !**************************************** !* - constitutive_dislotwin_init !* - constitutive_dislotwin_stateInit !* - constitutive_dislotwin_relevantState !* - constitutive_dislotwin_homogenizedC !* - constitutive_dislotwin_microstructure !* - constitutive_dislotwin_LpAndItsTangent !* - constitutive_dislotwin_dotState !* - constitutive_dislotwin_deltaState !* - constitutive_dislotwin_dotTemperature !* - constitutive_dislotwin_postResults !**************************************** subroutine constitutive_dislotwin_init(file) !************************************** !* Module initialization * !************************************** use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use prec, only: pInt,pReal use math, only: math_Mandel3333to66,math_Voigt66to3333,math_mul3x3 use mesh, only: mesh_maxNips, mesh_NcpElems use IO use material use lattice !* Input variables integer(pInt), intent(in) :: file !* Local variables integer(pInt), parameter :: maxNchunks = 21_pInt integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) :: section, maxNinstance,mySize,myStructure,maxTotalNslip,maxTotalNtwin,& f,i,j,k,l,m,n,o,p,q,r,s,ns,nt, & index_myFamily, index_otherFamily character(len=64) tag character(len=1024) :: line = '' ! to start initialized write(6,*) write(6,*) '<<<+- constitutive_',trim(constitutive_dislotwin_label),' init -+>>>' write(6,*) '$Id$' #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == constitutive_dislotwin_label),pInt) if (maxNinstance == 0_pInt) return !* Space allocation for global variables allocate(constitutive_dislotwin_sizeDotState(maxNinstance)) constitutive_dislotwin_sizeDotState = 0_pInt allocate(constitutive_dislotwin_sizeState(maxNinstance)) constitutive_dislotwin_sizeState = 0_pInt allocate(constitutive_dislotwin_sizePostResults(maxNinstance)) constitutive_dislotwin_sizePostResults = 0_pInt allocate(constitutive_dislotwin_sizePostResult(maxval(phase_Noutput),maxNinstance)) constitutive_dislotwin_sizePostResult = 0_pInt allocate(constitutive_dislotwin_output(maxval(phase_Noutput),maxNinstance)) constitutive_dislotwin_output = '' allocate(constitutive_dislotwin_Noutput(maxNinstance)) constitutive_dislotwin_Noutput = 0_pInt allocate(constitutive_dislotwin_structureName(maxNinstance)) constitutive_dislotwin_structureName = '' allocate(constitutive_dislotwin_structure(maxNinstance)) constitutive_dislotwin_structure = 0_pInt allocate(constitutive_dislotwin_Nslip(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_Nslip = 0_pInt allocate(constitutive_dislotwin_Ntwin(lattice_maxNtwinFamily,maxNinstance)) constitutive_dislotwin_Ntwin = 0_pInt allocate(constitutive_dislotwin_totalNslip(maxNinstance)) constitutive_dislotwin_totalNslip = 0_pInt allocate(constitutive_dislotwin_totalNtwin(maxNinstance)) constitutive_dislotwin_totalNtwin = 0_pInt allocate(constitutive_dislotwin_CoverA(maxNinstance)) constitutive_dislotwin_CoverA = 0.0_pReal allocate(constitutive_dislotwin_C11(maxNinstance)) constitutive_dislotwin_C11 = 0.0_pReal allocate(constitutive_dislotwin_C12(maxNinstance)) constitutive_dislotwin_C12 = 0.0_pReal allocate(constitutive_dislotwin_C13(maxNinstance)) constitutive_dislotwin_C13 = 0.0_pReal allocate(constitutive_dislotwin_C33(maxNinstance)) constitutive_dislotwin_C33 = 0.0_pReal allocate(constitutive_dislotwin_C44(maxNinstance)) constitutive_dislotwin_C44 = 0.0_pReal allocate(constitutive_dislotwin_Gmod(maxNinstance)) constitutive_dislotwin_Gmod = 0.0_pReal allocate(constitutive_dislotwin_CAtomicVolume(maxNinstance)) constitutive_dislotwin_CAtomicVolume = 0.0_pReal allocate(constitutive_dislotwin_D0(maxNinstance)) constitutive_dislotwin_D0 = 0.0_pReal allocate(constitutive_dislotwin_Qsd(maxNinstance)) constitutive_dislotwin_Qsd = 0.0_pReal allocate(constitutive_dislotwin_GrainSize(maxNinstance)) constitutive_dislotwin_GrainSize = 0.0_pReal allocate(constitutive_dislotwin_p(maxNinstance)) constitutive_dislotwin_p = 0.0_pReal allocate(constitutive_dislotwin_q(maxNinstance)) constitutive_dislotwin_q = 0.0_pReal allocate(constitutive_dislotwin_MaxTwinFraction(maxNinstance)) constitutive_dislotwin_MaxTwinFraction = 0.0_pReal allocate(constitutive_dislotwin_r(maxNinstance)) constitutive_dislotwin_r = 0.0_pReal allocate(constitutive_dislotwin_CEdgeDipMinDistance(maxNinstance)) constitutive_dislotwin_CEdgeDipMinDistance = 0.0_pReal allocate(constitutive_dislotwin_Cmfptwin(maxNinstance)) constitutive_dislotwin_Cmfptwin = 0.0_pReal allocate(constitutive_dislotwin_Cthresholdtwin(maxNinstance)) constitutive_dislotwin_Cthresholdtwin = 0.0_pReal allocate(constitutive_dislotwin_SolidSolutionStrength(maxNinstance)) constitutive_dislotwin_SolidSolutionStrength = 0.0_pReal allocate(constitutive_dislotwin_L0(maxNinstance)) constitutive_dislotwin_L0 = 0.0_pReal allocate(constitutive_dislotwin_aTolRho(maxNinstance)) constitutive_dislotwin_aTolRho = 0.0_pReal allocate(constitutive_dislotwin_Cslip_66(6,6,maxNinstance)) constitutive_dislotwin_Cslip_66 = 0.0_pReal allocate(constitutive_dislotwin_Cslip_3333(3,3,3,3,maxNinstance)) constitutive_dislotwin_Cslip_3333 = 0.0_pReal allocate(constitutive_dislotwin_sbResistance(maxNinstance)) constitutive_dislotwin_sbResistance = 0.0_pReal allocate(constitutive_dislotwin_sbVelocity(maxNinstance)) constitutive_dislotwin_sbVelocity = 0.0_pReal allocate(constitutive_dislotwin_sbQedge(maxNinstance)) constitutive_dislotwin_sbQedge = 0.0_pReal allocate(constitutive_dislotwin_SFE_0K(maxNinstance)) constitutive_dislotwin_SFE_0K = 0.0_pReal allocate(constitutive_dislotwin_dSFE_dT(maxNinstance)) constitutive_dislotwin_dSFE_dT = 0.0_pReal allocate(constitutive_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_rhoEdge0 = 0.0_pReal allocate(constitutive_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_rhoEdgeDip0 = 0.0_pReal allocate(constitutive_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_burgersPerSlipFamily = 0.0_pReal allocate(constitutive_dislotwin_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance)) constitutive_dislotwin_burgersPerTwinFamily = 0.0_pReal allocate(constitutive_dislotwin_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_QedgePerSlipFamily = 0.0_pReal allocate(constitutive_dislotwin_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_v0PerSlipFamily = 0.0_pReal allocate(constitutive_dislotwin_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance)) constitutive_dislotwin_Ndot0PerTwinFamily = 0.0_pReal allocate(constitutive_dislotwin_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance)) constitutive_dislotwin_twinsizePerTwinFamily = 0.0_pReal allocate(constitutive_dislotwin_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance)) constitutive_dislotwin_CLambdaSlipPerSlipFamily = 0.0_pReal allocate(constitutive_dislotwin_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance)) constitutive_dislotwin_interaction_SlipSlip = 0.0_pReal allocate(constitutive_dislotwin_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance)) constitutive_dislotwin_interaction_SlipTwin = 0.0_pReal allocate(constitutive_dislotwin_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance)) constitutive_dislotwin_interaction_TwinSlip = 0.0_pReal allocate(constitutive_dislotwin_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance)) constitutive_dislotwin_interaction_TwinTwin = 0.0_pReal allocate(constitutive_dislotwin_sbSv(6,6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) constitutive_dislotwin_sbSv = 0.0_pReal !* Readout data from material.config file rewind(file) line = '' section = 0_pInt do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to read(file,'(a1024)',END=100) line enddo do ! read thru sections of phase part read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt ! advance section counter cycle endif if (section > 0_pInt .and. phase_plasticity(section) == constitutive_dislotwin_label) then ! one of my sections i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('plasticity', 'elasticity') cycle case ('(output)') constitutive_dislotwin_Noutput(i) = constitutive_dislotwin_Noutput(i) + 1_pInt constitutive_dislotwin_output(constitutive_dislotwin_Noutput(i),i) = IO_lc(IO_stringValue(line,positions,2_pInt)) case ('lattice_structure') constitutive_dislotwin_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt)) case ('covera_ratio') constitutive_dislotwin_CoverA(i) = IO_floatValue(line,positions,2_pInt) case ('c11') constitutive_dislotwin_C11(i) = IO_floatValue(line,positions,2_pInt) case ('c12') constitutive_dislotwin_C12(i) = IO_floatValue(line,positions,2_pInt) case ('c13') constitutive_dislotwin_C13(i) = IO_floatValue(line,positions,2_pInt) case ('c33') constitutive_dislotwin_C33(i) = IO_floatValue(line,positions,2_pInt) case ('c44') constitutive_dislotwin_C44(i) = IO_floatValue(line,positions,2_pInt) case ('nslip') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j) case ('ntwin') forall (j = 1_pInt:lattice_maxNtwinFamily) & constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j) case ('rhoedge0') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('rhoedgedip0') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('slipburgers') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('twinburgers') forall (j = 1_pInt:lattice_maxNtwinFamily) & constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('qedge') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('v0') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('ndot0') forall (j = 1_pInt:lattice_maxNtwinFamily) & constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('twinsize') forall (j = 1_pInt:lattice_maxNtwinFamily) & constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('clambdaslip') forall (j = 1_pInt:lattice_maxNslipFamily) & constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('grainsize') constitutive_dislotwin_GrainSize(i) = IO_floatValue(line,positions,2_pInt) case ('maxtwinfraction') constitutive_dislotwin_MaxTwinFraction(i) = IO_floatValue(line,positions,2_pInt) case ('pexponent') constitutive_dislotwin_p(i) = IO_floatValue(line,positions,2_pInt) case ('qexponent') constitutive_dislotwin_q(i) = IO_floatValue(line,positions,2_pInt) case ('rexponent') constitutive_dislotwin_r(i) = IO_floatValue(line,positions,2_pInt) case ('d0') constitutive_dislotwin_D0(i) = IO_floatValue(line,positions,2_pInt) case ('qsd') constitutive_dislotwin_Qsd(i) = IO_floatValue(line,positions,2_pInt) case ('atol_rho') constitutive_dislotwin_aTolRho(i) = IO_floatValue(line,positions,2_pInt) case ('cmfptwin') constitutive_dislotwin_Cmfptwin(i) = IO_floatValue(line,positions,2_pInt) case ('cthresholdtwin') constitutive_dislotwin_Cthresholdtwin(i) = IO_floatValue(line,positions,2_pInt) case ('solidsolutionstrength') constitutive_dislotwin_SolidSolutionStrength(i) = IO_floatValue(line,positions,2_pInt) case ('l0') constitutive_dislotwin_L0(i) = IO_floatValue(line,positions,2_pInt) case ('cedgedipmindistance') constitutive_dislotwin_CEdgeDipMinDistance(i) = IO_floatValue(line,positions,2_pInt) case ('catomicvolume') constitutive_dislotwin_CAtomicVolume(i) = IO_floatValue(line,positions,2_pInt) case ('interaction_slipslip','interactionslipslip') forall (j = 1_pInt:lattice_maxNinteraction) & constitutive_dislotwin_interaction_SlipSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('interaction_sliptwin','interactionsliptwin') forall (j = 1_pInt:lattice_maxNinteraction) & constitutive_dislotwin_interaction_SlipTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('interaction_twinslip','interactiontwinslip') forall (j = 1_pInt:lattice_maxNinteraction) & constitutive_dislotwin_interaction_TwinSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('interaction_twintwin','interactiontwintwin') forall (j = 1_pInt:lattice_maxNinteraction) & constitutive_dislotwin_interaction_TwinTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) case ('sfe_0k') constitutive_dislotwin_SFE_0K(i) = IO_floatValue(line,positions,2_pInt) case ('dsfe_dt') constitutive_dislotwin_dSFE_dT(i) = IO_floatValue(line,positions,2_pInt) case ('shearbandresistance') constitutive_dislotwin_sbResistance(i) = IO_floatValue(line,positions,2_pInt) case ('shearbandvelocity') constitutive_dislotwin_sbVelocity(i) = IO_floatValue(line,positions,2_pInt) case ('qedgepersbsystem') constitutive_dislotwin_sbQedge(i) = IO_floatValue(line,positions,2_pInt) case default call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_dislotwin_label//')') end select endif enddo 100 do i = 1_pInt,maxNinstance constitutive_dislotwin_structure(i) = & lattice_initializeStructure(constitutive_dislotwin_structureName(i),constitutive_dislotwin_CoverA(i)) myStructure = constitutive_dislotwin_structure(i) !* Sanity checks if (myStructure < 1_pInt) call IO_error(205_pInt,e=i) if (sum(constitutive_dislotwin_Nslip(:,i)) < 0_pInt) call IO_error(211_pInt,e=i,ext_msg='Nslip (' & //constitutive_dislotwin_label//')') if (sum(constitutive_dislotwin_Ntwin(:,i)) < 0_pInt) call IO_error(211_pInt,e=i,ext_msg='Ntwin (' & //constitutive_dislotwin_label//')') do f = 1_pInt,lattice_maxNslipFamily if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then if (constitutive_dislotwin_rhoEdge0(f,i) < 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='rhoEdge0 (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_rhoEdgeDip0(f,i) < 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='rhoEdgeDip0 (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_burgersPerSlipFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='slipBurgers (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_v0PerSlipFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='v0 (' & //constitutive_dislotwin_label//')') endif enddo do f = 1_pInt,lattice_maxNtwinFamily if (constitutive_dislotwin_Ntwin(f,i) > 0_pInt) then if (constitutive_dislotwin_burgersPerTwinFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='twinburgers (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_Ndot0PerTwinFamily(f,i) < 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='ndot0 (' & //constitutive_dislotwin_label//')') endif enddo if (constitutive_dislotwin_CAtomicVolume(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='cAtomicVolume (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_D0(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='D0 (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_Qsd(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='Qsd (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_aTolRho(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='aTolRho (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_sbResistance(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='sbResistance (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_sbVelocity(i) < 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='sbVelocity (' & //constitutive_dislotwin_label//')') if (constitutive_dislotwin_SFE_0K(i) == 0.0_pReal .AND. & constitutive_dislotwin_dSFE_dT(i) == 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='SFE (' & //constitutive_dislotwin_label//')') !* Determine total number of active slip or twin systems constitutive_dislotwin_Nslip(:,i) = min(lattice_NslipSystem(:,myStructure),constitutive_dislotwin_Nslip(:,i)) constitutive_dislotwin_Ntwin(:,i) = min(lattice_NtwinSystem(:,myStructure),constitutive_dislotwin_Ntwin(:,i)) constitutive_dislotwin_totalNslip(i) = sum(constitutive_dislotwin_Nslip(:,i)) constitutive_dislotwin_totalNtwin(i) = sum(constitutive_dislotwin_Ntwin(:,i)) enddo !* Allocation of variables whose size depends on the total number of active slip systems maxTotalNslip = maxval(constitutive_dislotwin_totalNslip) maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin) !write(6,*) 'nslip',i,constitutive_dislotwin_totalNslip(i),maxTotalNslip !write(6,*) 'ntwin',i,constitutive_dislotwin_totalNtwin(i),maxTotalNtwin allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance)) constitutive_dislotwin_burgersPerSlipSystem = 0.0_pReal allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance)) constitutive_dislotwin_burgersPerTwinSystem= 0.0_pReal allocate(constitutive_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance)) constitutive_dislotwin_QedgePerSlipSystem = 0.0_pReal allocate(constitutive_dislotwin_v0PerSlipSystem(maxTotalNslip, maxNinstance)) constitutive_dislotwin_v0PerSlipSystem = 0.0_pReal allocate(constitutive_dislotwin_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance)) constitutive_dislotwin_Ndot0PerTwinSystem = 0.0_pReal allocate(constitutive_dislotwin_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance)) constitutive_dislotwin_twinsizePerTwinSystem = 0.0_pReal allocate(constitutive_dislotwin_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance)) constitutive_dislotwin_CLambdaSlipPerSlipSystem = 0.0_pReal allocate(constitutive_dislotwin_interactionMatrix_SlipSlip(maxTotalNslip,maxTotalNslip,maxNinstance)) constitutive_dislotwin_interactionMatrix_SlipSlip = 0.0_pReal allocate(constitutive_dislotwin_interactionMatrix_SlipTwin(maxTotalNslip,maxTotalNtwin,maxNinstance)) constitutive_dislotwin_interactionMatrix_SlipTwin = 0.0_pReal allocate(constitutive_dislotwin_interactionMatrix_TwinSlip(maxTotalNtwin,maxTotalNslip,maxNinstance)) constitutive_dislotwin_interactionMatrix_TwinSlip = 0.0_pReal allocate(constitutive_dislotwin_interactionMatrix_TwinTwin(maxTotalNtwin,maxTotalNtwin,maxNinstance)) constitutive_dislotwin_interactionMatrix_TwinTwin = 0.0_pReal allocate(constitutive_dislotwin_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance)) constitutive_dislotwin_forestProjectionEdge = 0.0_pReal allocate(constitutive_dislotwin_Ctwin_66(6,6,maxTotalNtwin,maxNinstance)) constitutive_dislotwin_Ctwin_66 = 0.0_pReal allocate(constitutive_dislotwin_Ctwin_3333(3,3,3,3,maxTotalNtwin,maxNinstance)) constitutive_dislotwin_Ctwin_3333 = 0.0_pReal do i = 1_pInt,maxNinstance myStructure = constitutive_dislotwin_structure(i) ns = constitutive_dislotwin_totalNslip(i) nt = constitutive_dislotwin_totalNtwin(i) ! write(6,*) 'instance',i,'has nslip and ntwin',ns,nt !* Determine size of state array constitutive_dislotwin_sizeDotState(i) = int(size(constitutive_dislotwin_listBasicSlipStates),pInt) * ns & + int(size(constitutive_dislotwin_listBasicTwinStates),pInt) * nt constitutive_dislotwin_sizeState(i) = constitutive_dislotwin_sizeDotState(i) & + int(size(constitutive_dislotwin_listDependentSlipStates),pInt) * ns & + int(size(constitutive_dislotwin_listDependentTwinStates),pInt) * nt !* Determine size of postResults array do o = 1_pInt,constitutive_dislotwin_Noutput(i) select case(constitutive_dislotwin_output(o,i)) case('edge_density', & 'dipole_density', & 'shear_rate_slip', & 'mfp_slip', & 'resolved_stress_slip', & 'threshold_stress_slip', & 'edge_dipole_distance', & 'stress_exponent' & ) mySize = ns case('twin_fraction', & 'shear_rate_twin', & 'mfp_twin', & 'resolved_stress_twin', & 'threshold_stress_twin' & ) mySize = nt case('resolved_stress_shearband', & 'shear_rate_shearband' & ) mySize = 6_pInt case('schmid_factor_shearband') mySize = 6_pInt case('sb_eigenvalues') mySize = 3_pInt case('sb_eigenvectors') mySize = 9_pInt case default call IO_error(212_pInt,ext_msg=constitutive_dislotwin_output(o,i)//' ('//constitutive_dislotwin_label//')') end select if (mySize > 0_pInt) then ! any meaningful output found constitutive_dislotwin_sizePostResult(o,i) = mySize constitutive_dislotwin_sizePostResults(i) = constitutive_dislotwin_sizePostResults(i) + mySize endif enddo !* Elasticity matrix and shear modulus according to material.config select case (myStructure) case(1_pInt:2_pInt) ! cubic(s) forall(k=1_pInt:3_pInt) forall(j=1_pInt:3_pInt) & constitutive_dislotwin_Cslip_66(k,j,i) = constitutive_dislotwin_C12(i) constitutive_dislotwin_Cslip_66(k,k,i) = constitutive_dislotwin_C11(i) constitutive_dislotwin_Cslip_66(k+3_pInt,k+3_pInt,i) = constitutive_dislotwin_C44(i) end forall case(3_pInt:) ! all hex constitutive_dislotwin_Cslip_66(1,1,i) = constitutive_dislotwin_C11(i) constitutive_dislotwin_Cslip_66(2,2,i) = constitutive_dislotwin_C11(i) constitutive_dislotwin_Cslip_66(3,3,i) = constitutive_dislotwin_C33(i) constitutive_dislotwin_Cslip_66(1,2,i) = constitutive_dislotwin_C12(i) constitutive_dislotwin_Cslip_66(2,1,i) = constitutive_dislotwin_C12(i) constitutive_dislotwin_Cslip_66(1,3,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(3,1,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(2,3,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(3,2,i) = constitutive_dislotwin_C13(i) constitutive_dislotwin_Cslip_66(4,4,i) = constitutive_dislotwin_C44(i) constitutive_dislotwin_Cslip_66(5,5,i) = constitutive_dislotwin_C44(i) constitutive_dislotwin_Cslip_66(6,6,i) = 0.5_pReal*(constitutive_dislotwin_C11(i)-constitutive_dislotwin_C12(i)) end select constitutive_dislotwin_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(constitutive_dislotwin_Cslip_66(:,:,i))) constitutive_dislotwin_Cslip_3333(:,:,:,:,i) = math_Voigt66to3333(constitutive_dislotwin_Cslip_66(:,:,i)) constitutive_dislotwin_Gmod(i) = & 0.2_pReal*(constitutive_dislotwin_C11(i)-constitutive_dislotwin_C12(i))+0.3_pReal*constitutive_dislotwin_C44(i) !* Process slip related parameters ------------------------------------------------ do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(constitutive_dislotwin_Nslip(1:f-1_pInt,i)) ! index in truncated slip system list do j = 1_pInt,constitutive_dislotwin_Nslip(f,i) ! system in family !* Burgers vector, ! dislocation velocity prefactor, ! mean free path prefactor, ! and minimum dipole distance constitutive_dislotwin_burgersPerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_burgersPerSlipFamily(f,i) constitutive_dislotwin_QedgePerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_QedgePerSlipFamily(f,i) constitutive_dislotwin_v0PerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_v0PerSlipFamily(f,i) constitutive_dislotwin_CLambdaSlipPerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_CLambdaSlipPerSlipFamily(f,i) !* Interaction matrices do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_dislotwin_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_dislotwin_interactionMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,myStructure))+j, & sum(lattice_NslipSystem(1:o-1,myStructure))+k, & myStructure), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_dislotwin_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_dislotwin_interactionMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,myStructure))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, & myStructure), i ) enddo; enddo enddo ! slip system in family enddo ! slip families !* Process twin related parameters ------------------------------------------------ do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(constitutive_dislotwin_Ntwin(1:f-1_pInt,i)) ! index in truncated twin system list do j = 1_pInt,constitutive_dislotwin_Ntwin(f,i) ! system in family !* Burgers vector, ! nucleation rate prefactor, ! and twin size constitutive_dislotwin_burgersPerTwinSystem(index_myFamily+j,i) = constitutive_dislotwin_burgersPerTwinFamily(f,i) constitutive_dislotwin_Ndot0PerTwinSystem(index_myFamily+j,i) = constitutive_dislotwin_Ndot0PerTwinFamily(f,i) constitutive_dislotwin_twinsizePerTwinSystem(index_myFamily+j,i) = constitutive_dislotwin_twinsizePerTwinFamily(f,i) !* Rotate twin elasticity matrices index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,myStructure)) ! index in full lattice twin list do l = 1_pInt,3_pInt ; do m = 1_pInt,3_pInt ; do n = 1_pInt,3_pInt ; do o = 1_pInt,3_pInt do p = 1_pInt,3_pInt ; do q = 1_pInt,3_pInt ; do r = 1_pInt,3_pInt ; do s = 1_pInt,3_pInt constitutive_dislotwin_Ctwin_3333(l,m,n,o,index_myFamily+j,i) = & constitutive_dislotwin_Ctwin_3333(l,m,n,o,index_myFamily+j,i) + & constitutive_dislotwin_Cslip_3333(p,q,r,s,i) * & lattice_Qtwin(l,p,index_otherFamily+j,myStructure) * & lattice_Qtwin(m,q,index_otherFamily+j,myStructure) * & lattice_Qtwin(n,r,index_otherFamily+j,myStructure) * & lattice_Qtwin(o,s,index_otherFamily+j,myStructure) enddo ; enddo ; enddo ; enddo enddo ; enddo ; enddo ; enddo constitutive_dislotwin_Ctwin_66(:,:,index_myFamily+j,i) = math_Mandel3333to66(constitutive_dislotwin_Ctwin_3333(:,:,:,:,index_myFamily+j,i)) !* Interaction matrices do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_dislotwin_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_dislotwin_interactionMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,myStructure))+j, & sum(lattice_NslipSystem(1:o-1_pInt,myStructure))+k, & myStructure), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_dislotwin_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_dislotwin_interactionMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,myStructure))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, & myStructure), i ) enddo; enddo enddo ! twin system in family enddo ! twin families enddo ! instances end subroutine function constitutive_dislotwin_stateInit(myInstance) !********************************************************************* !* initial microstructural state * !********************************************************************* use prec, only: pReal,pInt use math, only: pi use lattice, only: lattice_maxNslipFamily implicit none !* Input-Output variables integer(pInt) :: myInstance real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_stateInit !* Local variables integer(pInt) :: i,j,f,ns,nt, index_myFamily real(pReal), dimension(constitutive_dislotwin_totalNslip(myInstance)) :: rhoEdge0, & rhoEdgeDip0, & invLambdaSlip0, & MeanFreePathSlip0, & tauSlipThreshold0 real(pReal), dimension(constitutive_dislotwin_totalNtwin(myInstance)) :: MeanFreePathTwin0,TwinVolume0 ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) constitutive_dislotwin_stateInit = 0.0_pReal !* Initialize basic slip state variables do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(constitutive_dislotwin_Nslip(1:f-1_pInt,myInstance)) ! index in truncated slip system list rhoEdge0(index_myFamily+1_pInt: & index_myFamily+constitutive_dislotwin_Nslip(f,myInstance)) = & constitutive_dislotwin_rhoEdge0(f,myInstance) rhoEdgeDip0(index_myFamily+1_pInt: & index_myFamily+constitutive_dislotwin_Nslip(f,myInstance)) = & constitutive_dislotwin_rhoEdgeDip0(f,myInstance) enddo constitutive_dislotwin_stateInit(1_pInt:ns) = rhoEdge0 constitutive_dislotwin_stateInit(ns+1_pInt:2_pInt*ns) = rhoEdgeDip0 !* Initialize dependent slip microstructural variables forall (i = 1_pInt:ns) & invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_forestProjectionEdge(1:ns,i,myInstance)))/ & constitutive_dislotwin_CLambdaSlipPerSlipSystem(i,myInstance) constitutive_dislotwin_stateInit(2_pInt*ns+nt+1_pInt:3_pInt*ns+nt) = invLambdaSlip0 forall (i = 1_pInt:ns) & MeanFreePathSlip0(i) = & constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+invLambdaSlip0(i)*constitutive_dislotwin_GrainSize(myInstance)) constitutive_dislotwin_stateInit(4_pInt*ns+2_pInt*nt+1:5_pInt*ns+2_pInt*nt) = MeanFreePathSlip0 forall (i = 1_pInt:ns) & tauSlipThreshold0(i) = constitutive_dislotwin_SolidSolutionStrength(myInstance) + & constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(i,myInstance) * & sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_interactionMatrix_SlipSlip(i,1:ns,myInstance))) constitutive_dislotwin_stateInit(5_pInt*ns+3_pInt*nt+1:6_pInt*ns+3_pInt*nt) = tauSlipThreshold0 !* Initialize dependent twin microstructural variables forall (j = 1_pInt:nt) & MeanFreePathTwin0(j) = constitutive_dislotwin_GrainSize(myInstance) constitutive_dislotwin_stateInit(5_pInt*ns+2_pInt*nt+1_pInt:5_pInt*ns+3_pInt*nt) = MeanFreePathTwin0 forall (j = 1_pInt:nt) & TwinVolume0(j) = & (pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(j,myInstance)*MeanFreePathTwin0(j)**(2.0_pReal) constitutive_dislotwin_stateInit(6_pInt*ns+4_pInt*nt+1_pInt:6_pInt*ns+5_pInt*nt) = TwinVolume0 !write(6,*) '#STATEINIT#' !write(6,*) !write(6,'(a,/,4(3(f30.20,1x)/))') 'RhoEdge',rhoEdge0 !write(6,'(a,/,4(3(f30.20,1x)/))') 'RhoEdgedip',rhoEdgeDip0 !write(6,'(a,/,4(3(f30.20,1x)/))') 'invLambdaSlip',invLambdaSlip0 !write(6,'(a,/,4(3(f30.20,1x)/))') 'MeanFreePathSlip',MeanFreePathSlip0 !write(6,'(a,/,4(3(f30.20,1x)/))') 'tauSlipThreshold', tauSlipThreshold0 !write(6,'(a,/,4(3(f30.20,1x)/))') 'MeanFreePathTwin', MeanFreePathTwin0 !write(6,'(a,/,4(3(f30.20,1x)/))') 'TwinVolume', TwinVolume0 end function pure function constitutive_dislotwin_aTolState(myInstance) !********************************************************************* !* absolute state tolerance * !********************************************************************* use prec, only: pReal, pInt implicit none !* Input-Output variables integer(pInt), intent(in) :: myInstance real(pReal), dimension(constitutive_dislotwin_sizeState(myInstance)) :: constitutive_dislotwin_aTolState constitutive_dislotwin_aTolState = constitutive_dislotwin_aTolRho(myInstance) end function constitutive_dislotwin_aTolState pure function constitutive_dislotwin_homogenizedC(state,g,ip,el) !********************************************************************* !* calculates homogenized elacticity matrix * !* - state : microstructure quantities * !* - g : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state real(pReal), dimension(6,6) :: constitutive_dislotwin_homogenizedC !* Local variables integer(pInt) myInstance,ns,nt,i real(pReal) sumf !* Shortened notation myInstance = phase_plasticityInstance(material_phase(g,ip,el)) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2_pInt*ns+1_pInt):(2_pInt*ns+nt))) ! safe for nt == 0 !* Homogenized elasticity matrix constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*constitutive_dislotwin_Cslip_66(:,:,myInstance) do i=1_pInt,nt constitutive_dislotwin_homogenizedC = & constitutive_dislotwin_homogenizedC + state(g,ip,el)%p(2_pInt*ns+i)*constitutive_dislotwin_Ctwin_66(:,:,i,myInstance) enddo end function subroutine constitutive_dislotwin_microstructure(Temperature,state,g,ip,el) !********************************************************************* !* calculates quantities characterizing the microstructure * !* - Temperature : temperature * !* - state : microstructure quantities * !* - ipc : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: pi use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance !use debug, only: debugger implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: state !* Local variables integer(pInt) myInstance,myStructure,ns,nt,s,t real(pReal) sumf,sfe real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(g,ip,el)))) :: fOverStacksize !* Shortened notation myInstance = phase_plasticityInstance(material_phase(g,ip,el)) myStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* State: 1 : ns rho_edge !* State: ns+1 : 2*ns rho_dipole !* State: 2*ns+1 : 2*ns+nt f !* State: 2*ns+nt+1 : 3*ns+nt 1/lambda_slip !* State: 3*ns+nt+1 : 4*ns+nt 1/lambda_sliptwin !* State: 4*ns+nt+1 : 4*ns+2*nt 1/lambda_twin !* State: 4*ns+2*nt+1 : 5*ns+2*nt mfp_slip !* State: 5*ns+2*nt+1 : 5*ns+3*nt mfp_twin !* State: 5*ns+3*nt+1 : 6*ns+3*nt threshold_stress_slip !* State: 6*ns+3*nt+1 : 6*ns+4*nt threshold_stress_twin !* State: 6*ns+4*nt+1 : 6*ns+5*nt twin volume !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 !* Stacking fault energy sfe = constitutive_dislotwin_SFE_0K(myInstance) + & constitutive_dislotwin_dSFE_dT(myInstance) * Temperature !* rescaled twin volume fraction for topology forall (t = 1_pInt:nt) & fOverStacksize(t) = & state(g,ip,el)%p(2_pInt*ns+t)/constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance) !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation forall (s = 1_pInt:ns) & state(g,ip,el)%p(2_pInt*ns+nt+s) = & sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1_pInt:2_pInt*ns)),& constitutive_dislotwin_forestProjectionEdge(1:ns,s,myInstance)))/ & constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,myInstance) !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !$OMP CRITICAL (evilmatmul) state(g,ip,el)%p((3_pInt*ns+nt+1_pInt):(4_pInt*ns+nt)) = 0.0_pReal if (nt > 0_pInt) & state(g,ip,el)%p((3_pInt*ns+nt+1):(4_pInt*ns+nt)) = & matmul(constitutive_dislotwin_interactionMatrix_SlipTwin(1:ns,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !$OMP CRITICAL (evilmatmul) if (nt > 0_pInt) & state(g,ip,el)%p((4_pInt*ns+nt+1_pInt):(4_pInt*ns+2_pInt*nt)) = & matmul(constitutive_dislotwin_interactionMatrix_TwinTwin(1:nt,1:nt,myInstance),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* mean free path between 2 obstacles seen by a moving dislocation do s = 1_pInt,ns if (nt > 0_pInt) then state(g,ip,el)%p(4_pInt*ns+2_pInt*nt+s) = & constitutive_dislotwin_GrainSize(myInstance)/(1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*& (state(g,ip,el)%p(2_pInt*ns+nt+s)+state(g,ip,el)%p(3_pInt*ns+nt+s))) else state(g,ip,el)%p(4_pInt*ns+s) = & constitutive_dislotwin_GrainSize(myInstance)/& (1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*(state(g,ip,el)%p(2_pInt*ns+s))) endif enddo !* mean free path between 2 obstacles seen by a growing twin forall (t = 1_pInt:nt) & state(g,ip,el)%p(5_pInt*ns+2_pInt*nt+t) = & (constitutive_dislotwin_Cmfptwin(myInstance)*constitutive_dislotwin_GrainSize(myInstance))/& (1.0_pReal+constitutive_dislotwin_GrainSize(myInstance)*state(g,ip,el)%p(4_pInt*ns+nt+t)) !* threshold stress for dislocation motion forall (s = 1_pInt:ns) & state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+s) = constitutive_dislotwin_SolidSolutionStrength(myInstance)+ & constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(s,myInstance)*& sqrt(dot_product((state(g,ip,el)%p(1:ns)+state(g,ip,el)%p(ns+1_pInt:2_pInt*ns)),& constitutive_dislotwin_interactionMatrix_SlipSlip(s,1:ns,myInstance))) !* threshold stress for growing twin forall (t = 1_pInt:nt) & state(g,ip,el)%p(6_pInt*ns+3_pInt*nt+t) = & constitutive_dislotwin_Cthresholdtwin(myInstance)*& (sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,myInstance))+& 3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,myInstance)*constitutive_dislotwin_Gmod(myInstance)/& (constitutive_dislotwin_L0(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(t,myInstance))) !* final twin volume after growth forall (t = 1_pInt:nt) & state(g,ip,el)%p(6_pInt*ns+4_pInt*nt+t) = & (pi/6.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,myInstance)*state(g,ip,el)%p(5*ns+2*nt+t)**(2.0_pReal) !if ((ip==1).and.(el==1)) then ! write(6,*) '#MICROSTRUCTURE#' ! write(6,*) ! write(6,'(a,/,4(3(f10.4,1x)/))') 'rhoEdge',state(g,ip,el)%p(1:ns)/1e9 ! write(6,'(a,/,4(3(f10.4,1x)/))') 'rhoEdgeDip',state(g,ip,el)%p(ns+1:2*ns)/1e9 ! write(6,'(a,/,4(3(f10.4,1x)/))') 'Fraction',state(g,ip,el)%p(2*ns+1:2*ns+nt) !endif end subroutine subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,g,ip,el) !********************************************************************* !* calculates plastic velocity gradient and its tangent * !* INPUT: * !* - Temperature : temperature * !* - state : microstructure quantities * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - Lp : plastic velocity gradient * !* - dLp_dTstar : derivative of Lp (4th-rank tensor) * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: math_Plain3333to99, math_Mandel6to33, math_Mandel33to6, & math_spectralDecompositionSym33, math_tensorproduct, math_symmetric33,math_mul33x3 use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: state real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(9,9), intent(out) :: dLp_dTstar !* Local variables integer(pInt) myInstance,myStructure,ns,nt,f,i,j,k,l,m,n,index_myFamily real(pReal) sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0 real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: & gdot_slip,dgdot_dtauslip,tau_slip real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(g,ip,el)))) :: & gdot_twin,dgdot_dtautwin,tau_twin real(pReal), dimension(6) :: gdot_sb,dgdot_dtausb,tau_sb real(pReal), dimension(3,3) :: eigVectors, sb_Smatrix real(pReal), dimension(3) :: eigValues, sb_s, sb_m real(pReal), dimension(3,6), parameter :: & sb_sComposition = & reshape(real([& 1, 0, 1, & 1, 0,-1, & 1, 1, 0, & 1,-1, 0, & 0, 1, 1, & 0, 1,-1 & ],pReal),[ 3,6]), & sb_mComposition = & reshape(real([& 1, 0,-1, & 1, 0,+1, & 1,-1, 0, & 1, 1, 0, & 0, 1,-1, & 0, 1, 1 & ],pReal),[ 3,6]) logical error !* Shortened notation myInstance = phase_plasticityInstance(material_phase(g,ip,el)) myStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2_pInt*ns+1_pInt):(2_pInt*ns+nt))) ! safe for nt == 0 Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar = 0.0_pReal !* Dislocation glide part gdot_slip = 0.0_pReal dgdot_dtauslip = 0.0_pReal j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j+1_pInt !* Calculation of Lp !* Resolved shear stress on slip system tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5*ns+3*nt+j))**(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*& constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1-StressRatio_p)**constitutive_dislotwin_q(myInstance))*& sign(1.0_pReal,tau_slip(j)) !* Derivatives of shear rates dgdot_dtauslip(j) = & ((abs(gdot_slip(j))*BoltzmannRatio*& constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/state(g,ip,el)%p(5*ns+3*nt+j))*& StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal) !* Plastic velocity gradient for dislocation glide Lp = Lp + (1.0_pReal - sumf)*gdot_slip(j)*lattice_Sslip(:,:,index_myFamily+i,myStructure) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtauslip(j)*& lattice_Sslip(k,l,index_myFamily+i,myStructure)*& lattice_Sslip(m,n,index_myFamily+i,myStructure) enddo enddo !* Shear banding (shearband) part if(constitutive_dislotwin_sbVelocity(myInstance) /= 0.0_pReal) then gdot_sb = 0.0_pReal dgdot_dtausb = 0.0_pReal call math_spectralDecompositionSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors, error) do j = 1_pInt,6_pInt sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j)) sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j)) sb_Smatrix = math_tensorproduct(sb_s,sb_m) constitutive_dislotwin_sbSv(1:6,j,g,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix)) !* Calculation of Lp !* Resolved shear stress on shear banding system tau_sb(j) = dot_product(Tstar_v,constitutive_dislotwin_sbSv(1:6,j,g,ip,el)) ! if (debug_selectiveDebugger .and. g==debug_g .and. ip==debug_i .and. el==debug_e) then ! write(6,'(a,3(i3,1x),a,i1,a,e10.3)') '### TAU SHEARBAND at g ip el ',g,ip,el,' on family ',j,' : ',tau ! endif !* Stress ratios StressRatio_p = (abs(tau_sb(j))/constitutive_dislotwin_sbResistance(myInstance))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau_sb(j))/constitutive_dislotwin_sbResistance(myInstance))& **(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_sbQedge(myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = constitutive_dislotwin_sbVelocity(myInstance) !* Shear rates due to shearband gdot_sb(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**constitutive_dislotwin_q(myInstance))*& sign(1.0_pReal,tau_sb(j)) !* Derivatives of shear rates dgdot_dtausb(j) = & ((abs(gdot_sb(j))*BoltzmannRatio*& constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/constitutive_dislotwin_sbResistance(myInstance))*& StressRatio_pminus1*(1_pInt-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal) !* Plastic velocity gradient for shear banding Lp = Lp + gdot_sb(j)*sb_Smatrix !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtausb(j)*& sb_Smatrix(k,l)*& sb_Smatrix(m,n) enddo end if !* Mechanical twinning part gdot_twin = 0.0_pReal dgdot_dtautwin = 0.0_pReal j = 0_pInt do f = 1_pInt,lattice_maxNtwinFamily ! loop over all slip families index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) slip system in family j = j+1_pInt !* Calculation of Lp !* Resolved shear stress on twin system tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_r = (state(g,ip,el)%p(6*ns+3*nt+j)/tau_twin(j))**constitutive_dislotwin_r(myInstance) !* Shear rates and their derivatives due to twin if ( tau_twin(j) > 0.0_pReal ) then gdot_twin(j) = & (constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*lattice_shearTwin(index_myFamily+i,myStructure)*& state(g,ip,el)%p(6*ns+4*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r) dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_r(myInstance))/tau_twin(j))*StressRatio_r endif !* Plastic velocity gradient for mechanical twinning Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,myStructure) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin(j)*& lattice_Stwin(k,l,index_myFamily+i,myStructure)*& lattice_Stwin(m,n,index_myFamily+i,myStructure) enddo enddo dLp_dTstar = math_Plain3333to99(dLp_dTstar3333) !if ((ip==1).and.(el==1)) then ! write(6,*) '#LP/TANGENT#' ! write(6,*) ! write(6,*) 'Tstar_v', Tstar_v ! write(6,*) 'tau_slip', tau_slip ! write(6,'(a10,/,4(3(e20.8,1x),/))') 'state',state(1,1,1)%p ! write(6,'(a,/,3(3(f10.4,1x)/))') 'Lp',Lp ! write(6,'(a,/,9(9(f10.4,1x)/))') 'dLp_dTstar',dLp_dTstar !endif end subroutine function constitutive_dislotwin_dotState(Tstar_v,Temperature,state,g,ip,el) !********************************************************************* !* rate of change of microstructure * !* INPUT: * !* - Temperature : temperature * !* - state : microstructure quantities * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - constitutive_dotState : evolution of state variable * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: pi use mesh, only: mesh_NcpElems, mesh_maxNips use material, only: homogenization_maxNgrains, material_phase, phase_plasticityInstance use lattice, only: lattice_Sslip_v, lattice_Stwin_v, & lattice_maxNslipFamily,lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_plasticityInstance(material_phase(g,ip,el)))) :: & constitutive_dislotwin_dotState !* Local variables integer(pInt) MyInstance,MyStructure,ns,nt,f,i,j,index_myFamily real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,& EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: & gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,& ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(g,ip,el)))) :: & tau_twin !* Shortened notation myInstance = phase_plasticityInstance(material_phase(g,ip,el)) MyStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2_pInt*ns+1_pInt):(2_pInt*ns+nt))) ! safe for nt == 0 constitutive_dislotwin_dotState = 0.0_pReal !* Dislocation density evolution gdot_slip = 0.0_pReal j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,MyStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j+1_pInt !* Resolved shear stress on slip system tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau_slip(j))/state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau_slip(j))/state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& (constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*& constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**constitutive_dislotwin_q(myInstance))*& sign(1.0_pReal,tau_slip(j)) !* Multiplication DotRhoMultiplication(j) = abs(gdot_slip(j))/& (constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)*state(g,ip,el)%p(4*ns+2*nt+j)) !* Dipole formation EdgeDipMinDistance = & constitutive_dislotwin_CEdgeDipMinDistance(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance) if (tau_slip(j) == 0.0_pReal) then DotRhoDipFormation(j) = 0.0_pReal else EdgeDipDistance(j) = & (3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))/& (16.0_pReal*pi*abs(tau_slip(j))) if (EdgeDipDistance(j)>state(g,ip,el)%p(4*ns+2*nt+j)) EdgeDipDistance(j)=state(g,ip,el)%p(4*ns+2*nt+j) if (EdgeDipDistance(j) 0.0_pReal ) then constitutive_dislotwin_dotState(2_pInt*ns+j) = & (constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*& state(g,ip,el)%p(6_pInt*ns+4_pInt*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r) endif enddo enddo !write(6,*) '#DOTSTATE#' !write(6,*) !write(6,'(a,/,4(3(f30.20,1x)/))') 'tau slip',tau_slip !write(6,'(a,/,4(3(f30.20,1x)/))') 'gamma slip',gdot_slip !write(6,'(a,/,4(3(f30.20,1x)/))') 'RhoEdge',state(g,ip,el)%p(1:ns) !write(6,'(a,/,4(3(f30.20,1x)/))') 'Threshold Slip', state(g,ip,el)%p(5*ns+3*nt+1:6*ns+3*nt) !write(6,'(a,/,4(3(f30.20,1x)/))') 'Multiplication',DotRhoMultiplication !write(6,'(a,/,4(3(f30.20,1x)/))') 'DipFormation',DotRhoDipFormation !write(6,'(a,/,4(3(f30.20,1x)/))') 'SingleSingle',DotRhoEdgeEdgeAnnihilation !write(6,'(a,/,4(3(f30.20,1x)/))') 'SingleDipole',DotRhoEdgeDipAnnihilation !write(6,'(a,/,4(3(f30.20,1x)/))') 'DipClimb',DotRhoEdgeDipClimb end function !********************************************************************* !* (instantaneous) incremental change of microstructure * !********************************************************************* function constitutive_dislotwin_deltaState(Tstar_v, Temperature, state, g,ip,el) use prec, only: pReal, & pInt, & p_vec use mesh, only: mesh_NcpElems, & mesh_maxNips use material, only: homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none !*** input variables integer(pInt), intent(in) :: g, & ! current grain number ip, & ! current integration point el ! current element number real(pReal), intent(in) :: Temperature ! temperature real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state ! current microstructural state !*** output variables real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_plasticityInstance(material_phase(g,ip,el)))) :: & constitutive_dislotwin_deltaState ! change of state variables / microstructure !*** local variables constitutive_dislotwin_deltaState = 0.0_pReal end function pure function constitutive_dislotwin_dotTemperature(Tstar_v,Temperature,state,g,ip,el) !********************************************************************* !* rate of change of microstructure * !* INPUT: * !* - Temperature : temperature * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - constitutive_dotTemperature : evolution of Temperature * !********************************************************************* use prec, only: pReal,pInt,p_vec use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains implicit none !* Input-Output variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state real(pReal) constitutive_dislotwin_dotTemperature constitutive_dislotwin_dotTemperature = 0.0_pReal end function function constitutive_dislotwin_postResults(Tstar_v,Temperature,dt,state,g,ip,el) !********************************************************************* !* return array of constitutive results * !* INPUT: * !* - Temperature : temperature * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - dt : current time increment * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: pi,math_Mandel6to33, math_spectralDecompositionSym33 use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance,phase_Noutput use lattice, only: lattice_Sslip_v,lattice_Stwin_v,lattice_maxNslipFamily,lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem implicit none !* Definition of variables integer(pInt), intent(in) :: g,ip,el real(pReal), intent(in) :: dt,Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state integer(pInt) myInstance,myStructure,ns,nt,f,o,i,c,j,index_myFamily real(pReal) sumf,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,gdot_slip,dgdot_dtauslip real(pReal), dimension(3,3) :: eigVectors real(pReal), dimension (3) :: eigValues logical error real(pReal), dimension(constitutive_dislotwin_sizePostResults(phase_plasticityInstance(material_phase(g,ip,el)))) :: & constitutive_dislotwin_postResults !* Shortened notation myInstance = phase_plasticityInstance(material_phase(g,ip,el)) myStructure = constitutive_dislotwin_structure(myInstance) ns = constitutive_dislotwin_totalNslip(myInstance) nt = constitutive_dislotwin_totalNtwin(myInstance) !* Total twin volume fraction sumf = sum(state(g,ip,el)%p((2*ns+1):(2*ns+nt))) ! safe for nt == 0 !* Required output c = 0_pInt constitutive_dislotwin_postResults = 0.0_pReal !* Spectral decomposition of stress call math_spectralDecompositionSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors, error) do o = 1_pInt,phase_Noutput(material_phase(g,ip,el)) select case(constitutive_dislotwin_output(o,myInstance)) case ('edge_density') constitutive_dislotwin_postResults(c+1_pInt:c+ns) = state(g,ip,el)%p(1:ns) c = c + ns case ('dipole_density') constitutive_dislotwin_postResults(c+1_pInt:c+ns) = state(g,ip,el)%p(ns+1:2_pInt*ns) c = c + ns case ('shear_rate_slip') j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau)/state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau)/state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& (constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)* & constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip constitutive_dislotwin_postResults(c+j) = & DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau) enddo ; enddo c = c + ns case ('mfp_slip') constitutive_dislotwin_postResults(c+1_pInt:c+ns) =& state(g,ip,el)%p((4_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+2_pInt*nt)) c = c + ns case ('resolved_stress_slip') j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) =& dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) enddo; enddo c = c + ns case ('threshold_stress_slip') constitutive_dislotwin_postResults(c+1_pInt:c+ns) = & state(g,ip,el)%p((5_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+3_pInt*nt)) c = c + ns case ('edge_dipole_distance') j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = & (3.0_pReal*constitutive_dislotwin_Gmod(myInstance)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance))/& (16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)))) constitutive_dislotwin_postResults(c+j) = min(constitutive_dislotwin_postResults(c+j),state(g,ip,el)%p(4*ns+2*nt+j)) ! constitutive_dislotwin_postResults(c+j) = max(constitutive_dislotwin_postResults(c+j),state(g,ip,el)%p(4*ns+2*nt+j)) enddo; enddo c = c + ns case ('resolved_stress_shearband') do j = 1_pInt,6_pInt ! loop over all shearband families constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v, constitutive_dislotwin_sbSv(1:6,j,g,ip,el)) enddo c = c + 6_pInt case ('schmid_factor_shearband') constitutive_dislotwin_postResults(c+1_pInt:c+6_pInt) = constitutive_dislotwin_sbSv(1:6,j,g,ip,el) c = c + 6_pInt case ('shear_rate_shearband') do j = 1_pInt,6_pInt ! loop over all shearband families !* Resolved shear stress on shearband system tau = dot_product(Tstar_v,constitutive_dislotwin_sbSv(1:6,j,g,ip,el)) !* Stress ratios StressRatio_p = (abs(tau)/constitutive_dislotwin_sbResistance(myInstance))**constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau)/constitutive_dislotwin_sbResistance(myInstance))& **(constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_sbQedge(myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = constitutive_dislotwin_sbVelocity(myInstance) !* Shear rates due to slip constitutive_dislotwin_postResults(c+j) = & DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau) enddo c = c + 6_pInt case ('twin_fraction') constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(g,ip,el)%p((2_pInt*ns+1_pInt):(2_pInt*ns+nt)) c = c + nt case ('shear_rate_twin') if (nt > 0_pInt) then j = 0_pInt do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) twin system in family j = j + 1_pInt !* Resolved shear stress on twin system tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_r = (state(g,ip,el)%p(6_pInt*ns+3_pInt*nt+j)/tau)**constitutive_dislotwin_r(myInstance) !* Shear rates and their derivatives due to twin if ( tau > 0.0_pReal ) then constitutive_dislotwin_postResults(c+j) = & (constitutive_dislotwin_MaxTwinFraction(myInstance)-sumf)*& state(g,ip,el)%p(6_pInt*ns+4_pInt*nt+j)*constitutive_dislotwin_Ndot0PerTwinSystem(f,myInstance)*exp(-StressRatio_r) endif enddo ; enddo endif c = c + nt case ('mfp_twin') constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(g,ip,el)%p((5_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+3_pInt*nt)) c = c + nt case ('resolved_stress_twin') if (nt > 0_pInt) then j = 0_pInt do f = 1_pInt,lattice_maxNtwinFamily ! loop over all slip families index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Ntwin(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,myStructure)) enddo; enddo endif c = c + nt case ('threshold_stress_twin') constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(g,ip,el)%p((6_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+4_pInt*nt)) c = c + nt case ('stress_exponent') j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,myStructure)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,myInstance) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,myStructure)) !* Stress ratios StressRatio_p = (abs(tau)/state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& constitutive_dislotwin_p(myInstance) StressRatio_pminus1 = (abs(tau)/state(g,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& (constitutive_dislotwin_p(myInstance)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(f,myInstance)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(g,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(f,myInstance)* & constitutive_dislotwin_v0PerSlipSystem(f,myInstance) !* Shear rates due to slip gdot_slip = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& constitutive_dislotwin_q(myInstance))*sign(1.0_pReal,tau) !* Derivatives of shear rates dgdot_dtauslip = & ((abs(gdot_slip)*BoltzmannRatio*& constitutive_dislotwin_p(myInstance)*constitutive_dislotwin_q(myInstance))/state(g,ip,el)%p(5*ns+3*nt+j))*& StressRatio_pminus1*(1_pInt-StressRatio_p)**(constitutive_dislotwin_q(myInstance)-1.0_pReal) !* Stress exponent if (gdot_slip==0.0_pReal) then constitutive_dislotwin_postResults(c+j) = 0.0_pReal else constitutive_dislotwin_postResults(c+j) = (tau/gdot_slip)*dgdot_dtauslip endif enddo ; enddo c = c + ns case ('sb_eigenvalues') forall (j = 1_pInt:3_pInt) & constitutive_dislotwin_postResults(c+j) = eigValues(j) c = c + 3_pInt case ('sb_eigenvectors') constitutive_dislotwin_postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,(/9/)) c = c + 9_pInt end select enddo end function END MODULE