! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see .
!
!--------------------------------------------------------------------------------------------------
!* $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!! Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Parses material.config
!--------------------------------------------------------------------------------------------------
module material
use prec, only: pReal, &
pInt
implicit none
private
character(len=64), parameter, public :: &
material_configFile = 'material.config', &
material_localFileExt = 'materialConfig'
character(len=32), parameter, public :: &
material_partHomogenization = 'homogenization', &
material_partCrystallite = 'crystallite', &
material_partPhase = 'phase'
character(len=64), dimension(:), allocatable, public :: &
phase_constitution, & !> constitution of each phase
phase_name, & !> name of each phase
homogenization_name, & !> name of each homogenization
homogenization_type, & !> type of each homogenization
crystallite_name !> name of each crystallite setting
integer(pInt), public :: &
homogenization_maxNgrains, & !> max number of grains in any USED homogenization
material_Nphase, & !> number of phases
material_Nhomogenization, & !> number of homogenizations
material_Nmicrostructure, & !> number of microstructures
material_Ncrystallite !> number of crystallite settings
integer(pInt), dimension(:), allocatable, public :: &
homogenization_Ngrains, & !> number of grains in each homogenization
homogenization_Noutput, & !> number of '(output)' items per homogenization
phase_Noutput, & !> number of '(output)' items per phase
phase_constitutionInstance, & !> instance of particular constitution of each phase
crystallite_Noutput, & !> number of '(output)' items per crystallite setting
homogenization_typeInstance, & !> instance of particular type of each homogenization
microstructure_crystallite !> crystallite setting ID of each microstructure
integer(pInt), dimension(:,:,:), allocatable, public :: &
material_phase, & !> phase (index) of each grain,IP,element
material_texture !> texture (index) of each grain,IP,element
real(pReal), dimension(:,:,:,:), allocatable, public :: &
material_EulerAngles !> initial orientation of each grain,IP,element
logical, dimension(:), allocatable, public :: &
microstructure_active, &
microstructure_elemhomo, & !> flag to indicate homogeneous microstructure distribution over element's IPs
phase_localConstitution !> flags phases with local constitutive law
character(len=32), parameter, private :: &
material_partMicrostructure = 'microstructure', &
material_partTexture = 'texture'
character(len=64), dimension(:), allocatable, private :: &
microstructure_name, & !> name of each microstructure
texture_name !> name of each texture
character(len=256), dimension(:), allocatable, private :: &
texture_ODFfile !> name of each ODF file
integer(pInt), private :: &
material_Ntexture, & !> number of textures
microstructure_maxNconstituents, & !> max number of constituents in any phase
texture_maxNgauss, & !> max number of Gauss components in any texture
texture_maxNfiber !> max number of Fiber components in any texture
integer(pInt), dimension(:), allocatable, private :: &
microstructure_Nconstituents, & !> number of constituents in each microstructure
texture_symmetry, & !> number of symmetric orientations per texture
texture_Ngauss, & !> number of Gauss components per texture
texture_Nfiber !> number of Fiber components per texture
integer(pInt), dimension(:,:), allocatable, private :: &
microstructure_phase, & !> phase IDs of each microstructure
microstructure_texture !> texture IDs of each microstructure
real(pReal), dimension(:,:), allocatable, private :: &
microstructure_fraction !> vol fraction of each constituent in microstructure
real(pReal), dimension(:,:,:), allocatable :: &
material_volume, & !> volume of each grain,IP,element
texture_Gauss, & !> data of each Gauss component
texture_Fiber !> data of each Fiber component
logical, dimension(:), allocatable, private :: &
homogenization_active
public :: material_init
contains
!*********************************************************************
subroutine material_init
!*********************************************************************
!* Module initialization *
!**************************************
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: IO_error, &
IO_open_file, &
IO_open_jobFile_stat
use debug, only: debug_what, &
debug_material, &
debug_levelBasic, &
debug_levelExtensive
implicit none
!* Definition of variables
integer(pInt), parameter :: fileunit = 200_pInt
integer(pInt) :: i,j, myDebug
myDebug = debug_what(debug_material)
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- material init -+>>>'
write(6,*) '$Id$'
#include "compilation_info.f90"
!$OMP END CRITICAL (write2out)
if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present...
call IO_open_file(fileunit,material_configFile) ! ...open material.config file
endif
call material_parseHomogenization(fileunit,material_partHomogenization)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*) 'Homogenization parsed'
!$OMP END CRITICAL (write2out)
endif
call material_parseMicrostructure(fileunit,material_partMicrostructure)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*) 'Microstructure parsed'
!$OMP END CRITICAL (write2out)
endif
call material_parseCrystallite(fileunit,material_partCrystallite)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*) 'Crystallite parsed'
!$OMP END CRITICAL (write2out)
endif
call material_parseTexture(fileunit,material_partTexture)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*) 'Texture parsed'
!$OMP END CRITICAL (write2out)
endif
call material_parsePhase(fileunit,material_partPhase)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*) 'Phase parsed'
!$OMP END CRITICAL (write2out)
endif
close(fileunit)
do i = 1_pInt,material_Nmicrostructure
if (microstructure_crystallite(i) < 1_pInt .or. &
microstructure_crystallite(i) > material_Ncrystallite) call IO_error(150_pInt,i)
if (minval(microstructure_phase(1:microstructure_Nconstituents(i),i)) < 1_pInt .or. &
maxval(microstructure_phase(1:microstructure_Nconstituents(i),i)) > material_Nphase) call IO_error(151_pInt,i)
if (minval(microstructure_texture(1:microstructure_Nconstituents(i),i)) < 1_pInt .or. &
maxval(microstructure_texture(1:microstructure_Nconstituents(i),i)) > material_Ntexture) call IO_error(152_pInt,i)
if (abs(sum(microstructure_fraction(:,i)) - 1.0_pReal) >= 1.0e-10_pReal) then
if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,*)'sum of microstructure fraction = ',sum(microstructure_fraction(:,i))
!$OMP END CRITICAL (write2out)
endif
call IO_error(153_pInt,i)
endif
enddo
if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*)
write (6,*) 'MATERIAL configuration'
write (6,*)
write (6,'(a32,1x,a16,1x,a6)') 'homogenization ','type ','grains'
do i = 1_pInt,material_Nhomogenization
write (6,'(1x,a32,1x,a16,1x,i4)') homogenization_name(i),homogenization_type(i),homogenization_Ngrains(i)
enddo
write (6,*)
write (6,'(a32,1x,a11,1x,a12,1x,a13)') 'microstructure ','crystallite','constituents','homogeneous'
do i = 1_pInt,material_Nmicrostructure
write (6,'(a32,4x,i4,8x,i4,8x,l1)') microstructure_name(i), &
microstructure_crystallite(i), &
microstructure_Nconstituents(i), &
microstructure_elemhomo(i)
if (microstructure_Nconstituents(i) > 0_pInt) then
do j = 1_pInt,microstructure_Nconstituents(i)
write (6,'(a1,1x,a32,1x,a32,1x,f7.4)') '>',phase_name(microstructure_phase(j,i)),&
texture_name(microstructure_texture(j,i)),&
microstructure_fraction(j,i)
enddo
write (6,*)
endif
enddo
!$OMP END CRITICAL (write2out)
endif
call material_populateGrains
end subroutine material_init
!*********************************************************************
subroutine material_parseHomogenization(myFile,myPart)
!*********************************************************************
use IO
use mesh, only: mesh_element
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) Nsections, section, s
character(len=64) :: tag
character(len=1024) ::line
Nsections = IO_countSections(myFile,myPart)
material_Nhomogenization = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(homogenization_name(Nsections)); homogenization_name = ''
allocate(homogenization_type(Nsections)); homogenization_type = ''
allocate(homogenization_typeInstance(Nsections)); homogenization_typeInstance = 0_pInt
allocate(homogenization_Ngrains(Nsections)); homogenization_Ngrains = 0_pInt
allocate(homogenization_Noutput(Nsections)); homogenization_Noutput = 0_pInt
allocate(homogenization_active(Nsections)); homogenization_active = .false.
forall (s = 1_pInt:Nsections) homogenization_active(s) = any(mesh_element(3,:) == s) ! current homogenization used in model? Homogenization view, maximum operations depend on maximum number of homog schemes
homogenization_Noutput = IO_countTagInPart(myFile,myPart,'(output)',Nsections)
rewind(myFile)
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(myFile,'(a1024)',END=100) line
enddo
do
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
homogenization_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('type')
homogenization_type(section) = IO_lc(IO_stringValue(line,positions,2_pInt)) ! adding: IO_lc function <<>>
do s = 1_pInt,section
if (homogenization_type(s) == homogenization_type(section)) &
homogenization_typeInstance(section) = homogenization_typeInstance(section) + 1_pInt ! count instances
enddo
case ('ngrains')
homogenization_Ngrains(section) = IO_intValue(line,positions,2_pInt)
end select
endif
enddo
100 homogenization_maxNgrains = maxval(homogenization_Ngrains,homogenization_active)
end subroutine material_parseHomogenization
!*********************************************************************
subroutine material_parseMicrostructure(myFile,myPart)
!*********************************************************************
use IO
use mesh, only: mesh_element, mesh_NcpElems
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = 7_pInt
integer(pInt), dimension(1_pInt+2_pInt*maxNchunks) :: positions
integer(pInt) :: Nsections, section, constituent, e, i
character(len=64) :: tag
character(len=1024) :: line
Nsections = IO_countSections(myFile,myPart)
material_Nmicrostructure = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(microstructure_name(Nsections)); microstructure_name = ''
allocate(microstructure_crystallite(Nsections)); microstructure_crystallite = 0_pInt
allocate(microstructure_Nconstituents(Nsections))
allocate(microstructure_active(Nsections))
allocate(microstructure_elemhomo(Nsections))
forall (e = 1_pInt:mesh_NcpElems) microstructure_active(mesh_element(4,e)) = .true. ! current microstructure used in model? Elementwise view, maximum N operations for N elements
microstructure_Nconstituents = IO_countTagInPart(myFile,myPart,'(constituent)',Nsections)
microstructure_maxNconstituents = maxval(microstructure_Nconstituents)
microstructure_elemhomo = IO_spotTagInPart(myFile,myPart,'/elementhomogeneous/',Nsections)
allocate(microstructure_phase (microstructure_maxNconstituents,Nsections)); microstructure_phase = 0_pInt
allocate(microstructure_texture (microstructure_maxNconstituents,Nsections)); microstructure_texture = 0_pInt
allocate(microstructure_fraction(microstructure_maxNconstituents,Nsections)); microstructure_fraction = 0.0_pReal
rewind(myFile)
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(myFile,'(a1024)',END=100) line
enddo
do
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
constituent = 0_pInt
microstructure_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('crystallite')
microstructure_crystallite(section) = IO_intValue(line,positions,2_pInt)
case ('(constituent)')
constituent = constituent + 1_pInt
do i=2_pInt,6_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('phase')
microstructure_phase(constituent,section) = IO_intValue(line,positions,i+1_pInt)
case('texture')
microstructure_texture(constituent,section) = IO_intValue(line,positions,i+1_pInt)
case('fraction')
microstructure_fraction(constituent,section) = IO_floatValue(line,positions,i+1_pInt)
end select
enddo
end select
endif
enddo
100 end subroutine material_parseMicrostructure
!*********************************************************************
subroutine material_parseCrystallite(myFile,myPart)
!*********************************************************************
use IO, only: IO_countSections, &
IO_error, &
IO_countTagInPart, &
IO_getTag, &
IO_lc, &
IO_isBlank
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: myFile
integer(pInt) :: Nsections, &
section
character(len=1024) :: line
Nsections = IO_countSections(myFile,myPart)
material_Ncrystallite = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(crystallite_name(Nsections)); crystallite_name = ''
allocate(crystallite_Noutput(Nsections)); crystallite_Noutput = 0_pInt
crystallite_Noutput = IO_countTagInPart(myFile,myPart,'(output)',Nsections)
rewind(myFile)
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(myFile,'(a1024)',END=100) line
enddo
do
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
crystallite_name(section) = IO_getTag(line,'[',']')
endif
enddo
100 end subroutine material_parseCrystallite
!*********************************************************************
subroutine material_parsePhase(myFile,myPart)
!*********************************************************************
use IO
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) Nsections, section, s
character(len=64) :: tag
character(len=1024) :: line
Nsections = IO_countSections(myFile,myPart)
material_Nphase = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(phase_name(Nsections)); phase_name = ''
allocate(phase_constitution(Nsections)); phase_constitution = ''
allocate(phase_constitutionInstance(Nsections)); phase_constitutionInstance = 0_pInt
allocate(phase_Noutput(Nsections))
allocate(phase_localConstitution(Nsections))
phase_Noutput = IO_countTagInPart(myFile,myPart,'(output)',Nsections)
phase_localConstitution = .not. IO_spotTagInPart(myFile,myPart,'/nonlocal/',Nsections)
rewind(myFile)
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(myFile,'(a1024)',END=100) line
enddo
do
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
phase_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('constitution')
phase_constitution(section) = IO_lc(IO_stringValue(line,positions,2_pInt))
do s = 1_pInt,section
if (phase_constitution(s) == phase_constitution(section)) &
phase_constitutionInstance(section) = phase_constitutionInstance(section) + 1_pInt ! count instances
enddo
end select
endif
enddo
100 end subroutine material_parsePhase
!*********************************************************************
subroutine material_parseTexture(myFile,myPart)
!*********************************************************************
use IO
use math, only: inRad, math_sampleRandomOri
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = 13_pInt
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) :: Nsections, section, gauss, fiber, i
character(len=64) :: tag
character(len=1024) :: line
Nsections = IO_countSections(myFile,myPart)
material_Ntexture = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(texture_name(Nsections)); texture_name = ''
allocate(texture_ODFfile(Nsections)); texture_ODFfile = ''
allocate(texture_symmetry(Nsections)); texture_symmetry = 1_pInt
allocate(texture_Ngauss(Nsections)); texture_Ngauss = 0_pInt
allocate(texture_Nfiber(Nsections)); texture_Nfiber = 0_pInt
texture_Ngauss = IO_countTagInPart(myFile,myPart,'(gauss)', Nsections) + &
IO_countTagInPart(myFile,myPart,'(random)',Nsections)
texture_Nfiber = IO_countTagInPart(myFile,myPart,'(fiber)', Nsections)
texture_maxNgauss = maxval(texture_Ngauss)
texture_maxNfiber = maxval(texture_Nfiber)
allocate(texture_Gauss (5,texture_maxNgauss,Nsections)); texture_Gauss = 0.0_pReal
allocate(texture_Fiber (6,texture_maxNfiber,Nsections)); texture_Fiber = 0.0_pReal
rewind(myFile)
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to myPart
read(myFile,'(a1024)',END=100) line
enddo
do
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
gauss = 0_pInt
fiber = 0_pInt
texture_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('hybridia')
texture_ODFfile(section) = IO_stringValue(line,positions,2_pInt)
case ('symmetry')
tag = IO_lc(IO_stringValue(line,positions,2_pInt))
select case (tag)
case('orthotropic')
texture_symmetry(section) = 4_pInt
case('monoclinic')
texture_symmetry(section) = 2_pInt
case default
texture_symmetry(section) = 1_pInt
end select
case ('(random)')
gauss = gauss + 1_pInt
texture_Gauss(1:3,gauss,section) = math_sampleRandomOri()
do i = 2_pInt,4_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('scatter')
texture_Gauss(4,gauss,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('fraction')
texture_Gauss(5,gauss,section) = IO_floatValue(line,positions,i+1_pInt)
end select
enddo
case ('(gauss)')
gauss = gauss + 1_pInt
do i = 2_pInt,10_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('phi1')
texture_Gauss(1,gauss,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('phi')
texture_Gauss(2,gauss,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('phi2')
texture_Gauss(3,gauss,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('scatter')
texture_Gauss(4,gauss,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('fraction')
texture_Gauss(5,gauss,section) = IO_floatValue(line,positions,i+1_pInt)
end select
enddo
case ('(fiber)')
fiber = fiber + 1_pInt
do i = 2_pInt,12_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,positions,i))
select case (tag)
case('alpha1')
texture_Fiber(1,fiber,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('alpha2')
texture_Fiber(2,fiber,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('beta1')
texture_Fiber(3,fiber,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('beta2')
texture_Fiber(4,fiber,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('scatter')
texture_Fiber(5,fiber,section) = IO_floatValue(line,positions,i+1_pInt)*inRad
case('fraction')
texture_Fiber(6,fiber,section) = IO_floatValue(line,positions,i+1_pInt)
end select
enddo
end select
endif
enddo
100 end subroutine material_parseTexture
!*********************************************************************
subroutine material_populateGrains
!*********************************************************************
use math, only: math_sampleRandomOri, &
math_sampleGaussOri, &
math_sampleFiberOri, &
math_symmetricEulers
use mesh, only: mesh_element, &
mesh_maxNips, &
mesh_NcpElems, &
mesh_ipVolume, &
FE_Nips
use IO, only: IO_error, &
IO_hybridIA
use FEsolving, only: FEsolving_execIP
use debug, only: debug_what, &
debug_material, &
debug_levelBasic
implicit none
integer(pInt), dimension (:,:), allocatable :: Ngrains
integer(pInt), dimension (microstructure_maxNconstituents) &
:: NgrainsOfConstituent
real(pReal), dimension (:), allocatable :: volumeOfGrain
real(pReal), dimension (:,:), allocatable :: orientationOfGrain
real(pReal), dimension (3) :: orientation
real(pReal), dimension (3,3) :: symOrientation
integer(pInt), dimension (:), allocatable :: phaseOfGrain, textureOfGrain
integer(pInt) :: t,e,i,g,j,m,homog,micro,sgn,hme, myDebug
integer(pInt) :: phaseID,textureID,dGrains,myNgrains,myNorientations, &
grain,constituentGrain,symExtension
real(pReal) :: extreme,rnd
integer(pInt), dimension (:,:), allocatable :: Nelems ! counts number of elements in homog, micro array
integer(pInt), dimension (:,:,:), allocatable :: elemsOfHomogMicro ! lists element number in homog, micro array
myDebug = debug_what(debug_material)
allocate(material_volume(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_volume = 0.0_pReal
allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_phase = 0_pInt
allocate(material_texture(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_texture = 0_pInt
allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; material_EulerAngles = 0.0_pReal
allocate(Ngrains(material_Nhomogenization,material_Nmicrostructure)); Ngrains = 0_pInt
allocate(Nelems(material_Nhomogenization,material_Nmicrostructure)); Nelems = 0_pInt
! precounting of elements for each homog/micro pair
do e = 1_pInt, mesh_NcpElems
homog = mesh_element(3,e)
micro = mesh_element(4,e)
Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt
enddo
allocate(elemsOfHomogMicro(maxval(Nelems),material_Nhomogenization,material_Nmicrostructure))
elemsOfHomogMicro = 0_pInt
Nelems = 0_pInt ! reuse as counter
! identify maximum grain count per IP (from element) and find grains per homog/micro pair
do e = 1_pInt,mesh_NcpElems
homog = mesh_element(3,e)
micro = mesh_element(4,e)
if (homog < 1_pInt .or. homog > material_Nhomogenization) & ! out of bounds
call IO_error(154_pInt,e,0_pInt,0_pInt)
if (micro < 1_pInt .or. micro > material_Nmicrostructure) & ! out of bounds
call IO_error(155_pInt,e,0_pInt,0_pInt)
if (microstructure_elemhomo(micro)) then
dGrains = homogenization_Ngrains(homog)
else
dGrains = homogenization_Ngrains(homog) * FE_Nips(mesh_element(2,e))
endif
Ngrains(homog,micro) = Ngrains(homog,micro) + dGrains
Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt
elemsOfHomogMicro(Nelems(homog,micro),homog,micro) = e ! remember elements active in this homog/micro pair
enddo
allocate(volumeOfGrain(maxval(Ngrains))) ! reserve memory for maximum case
allocate(phaseOfGrain(maxval(Ngrains))) ! reserve memory for maximum case
allocate(textureOfGrain(maxval(Ngrains))) ! reserve memory for maximum case
allocate(orientationOfGrain(3,maxval(Ngrains))) ! reserve memory for maximum case
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*)
write (6,*) 'MATERIAL grain population'
write (6,*)
write (6,'(a32,1x,a32,1x,a6)') 'homogenization_name','microstructure_name','grain#'
!$OMP END CRITICAL (write2out)
endif
do homog = 1_pInt,material_Nhomogenization ! loop over homogenizations
dGrains = homogenization_Ngrains(homog) ! grain number per material point
do micro = 1_pInt,material_Nmicrostructure ! all pairs of homog and micro
if (Ngrains(homog,micro) > 0_pInt) then ! an active pair of homog and micro
myNgrains = Ngrains(homog,micro) ! assign short name for total number of grains to populate
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write (6,*)
write (6,'(a32,1x,a32,1x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains
!$OMP END CRITICAL (write2out)
endif
! ---------------------------------------------------------------------------- calculate volume of each grain
volumeOfGrain = 0.0_pReal
grain = 0_pInt
do hme = 1_pInt, Nelems(homog,micro)
e = elemsOfHomogMicro(hme,homog,micro) ! my combination of homog and micro, only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex
if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs
volumeOfGrain(grain+1_pInt:grain+dGrains) = sum(mesh_ipVolume(1:FE_Nips(mesh_element(2,e)),e))/&
real(dGrains,pReal)
grain = grain + dGrains ! wind forward by NgrainsPerIP
else
forall (i = 1_pInt:FE_Nips(mesh_element(2,e))) & ! loop over IPs
volumeOfGrain(grain+(i-1)*dGrains+1_pInt:grain+i*dGrains) = &
mesh_ipVolume(i,e)/dGrains ! assign IPvolume/Ngrains to all grains of IP
grain = grain + FE_Nips(mesh_element(2,e)) * dGrains ! wind forward by Nips*NgrainsPerIP
endif
enddo
! ---------------------------------------------------------------------------- divide myNgrains as best over constituents
NgrainsOfConstituent = 0_pInt
forall (i = 1_pInt:microstructure_Nconstituents(micro)) &
NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro) * myNgrains, pInt) ! do rounding integer conversion
do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong?
sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change
extreme = 0.0_pReal
t = 0_pInt
do i = 1_pInt,microstructure_Nconstituents(micro) ! find largest deviator
if (real(sgn,pReal)*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro)) > extreme) then
extreme = real(sgn,pReal)*log(NgrainsOfConstituent(i)/myNgrains/microstructure_fraction(i,micro))
t = i
endif
enddo
NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one
enddo
! ----------------------------------------------------------------------------
phaseOfGrain = 0_pInt
textureOfGrain = 0_pInt
orientationOfGrain = 0.0_pReal
grain = 0_pInt ! reset microstructure grain index
do i = 1_pInt,microstructure_Nconstituents(micro) ! loop over constituents
phaseID = microstructure_phase(i,micro)
textureID = microstructure_texture(i,micro)
phaseOfGrain(grain+1_pInt:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase
textureOfGrain(grain+1_pInt:grain+NgrainsOfConstituent(i)) = textureID ! assign resp. texture
myNorientations = ceiling(real(NgrainsOfConstituent(i),pReal)/&
real(texture_symmetry(textureID),pReal),pInt) ! max number of unique orientations (excl. symmetry)
constituentGrain = 0_pInt ! constituent grain index
! ---------
if (texture_ODFfile(textureID) == '') then ! dealing with texture components
! ---------
do t = 1_pInt,texture_Ngauss(textureID) ! loop over Gauss components
do g = 1_pInt,int(myNorientations*texture_Gauss(5,t,textureID),pInt) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleGaussOri(texture_Gauss(1:3,t,textureID),&
texture_Gauss( 4,t,textureID))
enddo
constituentGrain = constituentGrain + int(myNorientations*texture_Gauss(5,t,textureID))
enddo
do t = 1_pInt,texture_Nfiber(textureID) ! loop over fiber components
do g = 1_pInt,int(myNorientations*texture_Fiber(6,t,textureID),pInt) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleFiberOri(texture_Fiber(1:2,t,textureID),&
texture_Fiber(3:4,t,textureID),&
texture_Fiber( 5,t,textureID))
enddo
constituentGrain = constituentGrain + int(myNorientations*texture_fiber(6,t,textureID),pInt)
enddo
do j = constituentGrain+1_pInt,myNorientations ! fill remainder with random
orientationOfGrain(:,grain+j) = math_sampleRandomOri()
enddo
! ---------
else ! hybrid IA
! ---------
orientationOfGrain(:,grain+1:grain+myNorientations) = IO_hybridIA(myNorientations,texture_ODFfile(textureID))
if (all(orientationOfGrain(:,grain+1) == -1.0_pReal)) call IO_error(156_pInt)
constituentGrain = constituentGrain + myNorientations
endif
! ----------------------------------------------------------------------------
symExtension = texture_symmetry(textureID) - 1_pInt
if (symExtension > 0_pInt) then ! sample symmetry
constituentGrain = NgrainsOfConstituent(i)-myNorientations ! calc remainder of array
do j = 1_pInt,myNorientations ! loop over each "real" orientation
symOrientation = math_symmetricEulers(texture_symmetry(textureID),orientationOfGrain(:,j)) ! get symmetric equivalents
e = min(symExtension,constituentGrain) ! are we at end of constituent grain array?
if (e > 0_pInt) then
orientationOfGrain(:,grain+myNorientations+1+(j-1_pInt)*symExtension:&
grain+myNorientations+e+(j-1_pInt)*symExtension) = &
symOrientation(:,1:e)
constituentGrain = constituentGrain - e ! remainder shrinks by e
endif
enddo
endif
grain = grain + NgrainsOfConstituent(i) ! advance microstructure grain index
enddo ! constituent
! ----------------------------------------------------------------------------
if (.not. microstructure_elemhomo(micro)) then ! unless element homogeneous, reshuffle grains
do i=1_pInt,myNgrains-1_pInt ! walk thru grains
call random_number(rnd)
t = nint(rnd*(myNgrains-i)+i+0.5_pReal,pInt) ! select a grain in remaining list
m = phaseOfGrain(t) ! exchange current with random
phaseOfGrain(t) = phaseOfGrain(i)
phaseOfGrain(i) = m
m = textureOfGrain(t) ! exchange current with random
textureOfGrain(t) = textureOfGrain(i)
textureOfGrain(i) = m
orientation = orientationOfGrain(:,t)
orientationOfGrain(:,t) = orientationOfGrain(:,i)
orientationOfGrain(:,i) = orientation
enddo
endif
!calc fraction after weighing with volumePerGrain
!exchange in MC steps to improve result...
! ----------------------------------------------------------------------------
grain = 0_pInt
do hme = 1_pInt, Nelems(homog,micro)
e = elemsOfHomogMicro(hme,homog,micro) ! only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex
if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs
forall (i = 1_pInt:FE_Nips(mesh_element(2,e)), g = 1_pInt:dGrains) ! loop over IPs and grains
material_volume(g,i,e) = volumeOfGrain(grain+g)
material_phase(g,i,e) = phaseOfGrain(grain+g)
material_texture(g,i,e) = textureOfGrain(grain+g)
material_EulerAngles(:,g,i,e) = orientationOfGrain(:,grain+g)
end forall
FEsolving_execIP(2,e) = 1_pInt ! restrict calculation to first IP only, since all other results are to be copied from this
grain = grain + dGrains ! wind forward by NgrainsPerIP
else
forall (i = 1_pInt:FE_Nips(mesh_element(2,e)), g = 1_pInt:dGrains) ! loop over IPs and grains
material_volume(g,i,e) = volumeOfGrain(grain+(i-1_pInt)*dGrains+g)
material_phase(g,i,e) = phaseOfGrain(grain+(i-1_pInt)*dGrains+g)
material_texture(g,i,e) = textureOfGrain(grain+(i-1_pInt)*dGrains+g)
material_EulerAngles(:,g,i,e) = orientationOfGrain(:,grain+(i-1_pInt)*dGrains+g)
end forall
grain = grain + FE_Nips(mesh_element(2,e)) * dGrains ! wind forward by Nips*NgrainsPerIP
endif
enddo
endif ! active homog,micro pair
enddo
enddo
deallocate(volumeOfGrain)
deallocate(phaseOfGrain)
deallocate(textureOfGrain)
deallocate(orientationOfGrain)
deallocate(Nelems)
deallocate(elemsOfHomogMicro)
end subroutine material_populateGrains
end module material