!******************************************************************** ! Material subroutine for MSC.Marc ! ! written by P. Eisenlohr, ! F. Roters, ! L. Hantcherli, ! W.A. Counts ! D.D. Tjahjanto ! ! MPI fuer Eisenforschung, Duesseldorf ! !******************************************************************** ! Usage: ! - choose material as hypela2 ! - set statevariable 2 to index of homogenization ! - set statevariable 3 to index of microstructure ! - make sure the file "material.config" exists in the working ! directory ! - make sure the file "numerics.config" exists in the working ! directory ! - use nonsymmetric option for solver (e.g. direct ! profile or multifrontal sparse, the latter seems ! to be faster!) ! - in case of ddm (domain decomposition)a SYMMETRIC ! solver has to be used, i.e uncheck "non-symmetric" !******************************************************************** ! Marc subroutines used: ! - hypela2 ! - plotv ! - quit !******************************************************************** ! Marc common blocks included: ! - concom: lovl, ncycle, inc, incsub ! - creeps: timinc !******************************************************************** ! include "prec.f90" ! uses nothing else include "IO.f90" ! uses prec include "numerics.f90" ! uses prec, IO include "math.f90" ! uses prec, numerics include "debug.f90" ! uses prec, numerics include "FEsolving.f90" ! uses prec, IO include "mesh.f90" ! uses prec, math, IO, FEsolving include "material.f90" ! uses prec, math, IO, mesh include "lattice.f90" ! uses prec, math, IO, material include "constitutive_phenopowerlaw.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_j2.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_dislobased.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_nonlocal.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive.f90" ! uses prec, IO, math, lattice, mesh, debug include "crystallite.f90" ! uses prec, math, IO, numerics include "homogenization_isostrain.f90" ! uses prec, math, IO, include "homogenization_RGC.f90" ! uses prec, math, IO, numerics, mesh: added <<>> include "homogenization.f90" ! uses prec, math, IO, numerics include "CPFEM.f90" ! uses prec, math, IO, numerics, debug, FEsolving, mesh, lattice, constitutive, crystallite !******************************************************************** ! This is the Marc material routine !******************************************************************** ! ! ************* user subroutine for defining material behavior ************** ! ! ! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and ! Rotation tensors at previous and current states, the analysis can be ! computationally expensive. Please use the user subroutine -> hypela ! if these kinematic quantities are not needed in the constitutive model ! ! ! IMPORTANT NOTES : ! ! (1) F,R,U are only available for continuum and membrane elements (not for ! shells and beams). ! ! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(= ! total Lagrange with large disp) in the parameter section of input deck. ! For updated Lagrangian formulation use the -> 'Plasticity,3' card(= ! update+finite+large disp+constant d) in the parameter section of ! input deck. ! ! The following operation obtains U (stretch tensor) at t=n+1 : ! ! call scla(un1,0.d0,itel,itel,1) ! do 3 k=1,3 ! do 2 i=1,3 ! do 1 j=1,3 ! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k) !1 continue !2 continue !3 continue ! !******************************************************************** subroutine hypela2(& d,& ! stress strain law to be formed g,& ! change in stress due to temperature effects e,& ! total elastic strain de,& ! increment of strain s,& ! stress - should be updated by user t,& ! state variables (comes in at t=n, must be updated to have state variables at t=n+1) dt,& ! increment of state variables ngens,& ! size of stress - strain law n,& ! element number nn,& ! integration point number kcus,& ! (1) layer number, (2) internal layer number matus,& ! (1) user material identification number, (2) internal material identification number ndi,& ! number of direct components nshear,& ! number of shear components disp,& ! incremental displacements dispt,& ! displacements at t=n (at assembly, lovl=4) and displacements at t=n+1 (at stress recovery, lovl=6) coord,& ! coordinates ffn,& ! deformation gradient frotn,& ! rotation tensor strechn,& ! square of principal stretch ratios, lambda(i) eigvn,& ! i principal direction components for j eigenvalues ffn1,& ! deformation gradient frotn1,& ! rotation tensor strechn1,& ! square of principal stretch ratios, lambda(i) eigvn1,& ! i principal direction components for j eigenvalues ncrd,& ! number of coordinates itel,& ! dimension of F and R, either 2 or 3 ndeg,& ! number of degrees of freedom ==> is this at correct list position ?!? ndm,& ! nnode,& ! number of nodes per element jtype,& ! element type lclass,& ! element class ifr,& ! set to 1 if R has been calculated ifu & ! set to 1 if stretch has been calculated ) use prec, only: pReal, & pInt use FEsolving, only: cycleCounter, & theInc, & theCycle, & theLovl, & theTime, & lastIncConverged, & outdatedByNewInc, & outdatedFFN1, & terminallyIll, & symmetricSolver use CPFEM, only: CPFEM_general use math, only: invnrmMandel use debug, only: debug_info, & debug_reset implicit none ! ** Start of generated type statements ** real(pReal) coord, d, de, disp, dispt, dt, e, eigvn, eigvn1, ffn, ffn1 real(pReal) frotn, frotn1, g integer(pInt) ifr, ifu, itel, jtype, kcus, lclass, matus, n, ncrd, ndeg integer(pInt) ndi, ndm, ngens, nn, nnode, nshear real(pReal) s, strechn, strechn1, t ! ** End of generated type statements ** dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),& frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2), lclass(2) ! Marc common blocks are in fixed format so they have to be reformated to free format (f90) ! Beware of changes in newer Marc versions include "concom%%MARCVERSION%%" ! concom is needed for inc, subinc, ncycle, lovl include "creeps%%MARCVERSION%%" ! creeps is needed for timinc (time increment) integer(pInt) computationMode, i if (inc == 0) then cycleCounter = 4 else if (theCycle > ncycle .or. theInc /= inc) then cycleCounter = 0 ! reset counter for each cutback or new inc terminallyIll = .false. endif if (theCycle /= ncycle .or. theLovl /= lovl) then cycleCounter = cycleCounter+1 ! ping pong outdatedFFN1 = .false. write (6,*) n(1),nn,'cycleCounter',cycleCounter call debug_info() ! output of debugging/performance statistics of former call debug_reset() endif endif if (cptim > theTime .or. theInc /= inc) then ! reached convergence lastIncConverged = .true. outdatedByNewInc = .true. write (6,*) n(1),nn,'lastIncConverged + outdated' endif if (mod(cycleCounter,2) /= 0) computationMode = 4 ! recycle in odd cycles if (mod(cycleCounter,4) == 2) computationMode = 3 ! collect in 2,6,10,... if (mod(cycleCounter,4) == 0) computationMode = 2 ! compute in 0,4,8,... if (computationMode == 4 .and. ncycle == 0 .and. .not. lastIncConverged) & computationMode = 6 ! recycle but restore known good consistent tangent if (computationMode == 4 .and. lastIncConverged) then computationMode = 5 ! recycle and record former consistent tangent lastIncConverged = .false. endif if (computationMode == 2 .and. outdatedByNewInc) then computationMode = 1 ! compute and age former results outdatedByNewInc = .false. endif theTime = cptim ! record current starting time theInc = inc ! record current increment number theCycle = ncycle ! record current cycle count theLovl = lovl ! record current lovl call CPFEM_general(computationMode,ffn,ffn1,t(1),timinc,n(1),nn,s,d,ngens) ! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13 ! Marc: 11, 22, 33, 12, 23, 13 forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*d(1:ngens,i)*invnrmMandel(1:ngens) s(1:ngens) = s(1:ngens)*invnrmMandel(1:ngens) if(symmetricSolver) d(1:ngens,1:ngens) = 0.5_pReal*(d(1:ngens,1:ngens)+transpose(d(1:ngens,1:ngens))) return end subroutine !******************************************************************** ! This routine sets user defined output variables for Marc !******************************************************************** ! ! select a variable contour plotting (user subroutine). ! !******************************************************************** subroutine plotv(& v,& ! variable s,& ! stress array sp,& ! stresses in preferred direction etot,& ! total strain (generalized) eplas,& ! total plastic strain ecreep,& ! total creep strain t,& ! current temperature m,& ! element number nn,& ! integration point number layer,& ! layer number ndi,& ! number of direct stress components nshear,& ! number of shear stress components jpltcd & ! user variable index ) use prec, only: pReal,pInt use mesh, only: mesh_FEasCP use homogenization, only: materialpoint_results implicit none real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*) real(pReal) v, t(*) integer(pInt) m, nn, layer, ndi, nshear, jpltcd v = materialpoint_results(jpltcd,nn,mesh_FEasCP('elem', m)) return end subroutine ! subroutine utimestep(timestep,timestepold,icall,time,timeloadcase) !******************************************************************** ! This routine modifies the addaptive time step of Marc !******************************************************************** ! use prec, only: pReal,pInt ! use CPFEM, only : CPFEM_timefactor_max ! implicit none ! ! real(pReal) timestep, timestepold, time,timeloadcase ! integer(pInt) icall ! ! user subroutine for modifying the time step in auto step ! ! timestep : the current time step as suggested by marc ! to be modified in this routine ! timestepold : the current time step before it was modified by marc ! icall : =1 for setting the initial time step ! =2 if this routine is called during an increment ! =3 if this routine is called at the beginning ! of the increment ! time : time at the start of the current increment ! timeloadcase: time period of the current load case ! ! it is in general not recommended to increase the time step ! during the increment. ! this routine is called right after the time step has (possibly) ! been updated by marc. ! ! user coding ! reduce timestep during increment in case mpie_timefactor is too large ! if(icall==2_pInt) then ! if(mpie_timefactor_max>1.25_pReal) then ! timestep=min(timestep,timestepold*0.8_pReal) ! end if ! return ! modify timestep at beginning of new increment ! else if(icall==3_pInt) then ! if(mpie_timefactor_max<=0.8_pReal) then ! timestep=min(timestep,timestepold*1.25_pReal) ! else if (mpie_timefactor_max<=1.0_pReal) then ! timestep=min(timestep,timestepold/mpie_timefactor_max) ! else if (mpie_timefactor_max<=1.25_pReal) then ! timestep=min(timestep,timestepold*1.01_pReal) ! else ! timestep=min(timestep,timestepold*0.8_pReal) ! end if ! end if ! return ! end