!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Utilities used by the different spectral solver variants !-------------------------------------------------------------------------------------------------- module spectral_utilities use, intrinsic :: iso_c_binding #include use PETScSys use prec, only: & pReal, & pInt use math, only: & math_I3 implicit none private include 'fftw3-mpi.f03' logical, public :: cutBack = .false. !< cut back of BVP solver in case convergence is not achieved or a material point is terminally ill integer(pInt), public, parameter :: maxPhaseFields = 2_pInt integer(pInt), public :: nActiveFields = 0_pInt !-------------------------------------------------------------------------------------------------- ! field labels information enum, bind(c) enumerator :: FIELD_UNDEFINED_ID, & FIELD_MECH_ID, & FIELD_THERMAL_ID, & FIELD_DAMAGE_ID, & FIELD_VACANCYDIFFUSION_ID end enum !-------------------------------------------------------------------------------------------------- ! grid related information information real(pReal), public :: wgt !< weighting factor 1/Nelems !-------------------------------------------------------------------------------------------------- ! variables storing information for spectral method and FFTW integer(pInt), public :: grid1Red !< grid(1)/2 real (C_DOUBLE), public, dimension(:,:,:,:,:), pointer :: tensorField_real !< real representation (some stress or deformation) of field_fourier complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:,:), pointer :: tensorField_fourier !< field on which the Fourier transform operates real(C_DOUBLE), public, dimension(:,:,:,:), pointer :: vectorField_real !< vector field real representation for fftw complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:), pointer :: vectorField_fourier !< vector field fourier representation for fftw real(C_DOUBLE), public, dimension(:,:,:), pointer :: scalarField_real !< scalar field real representation for fftw complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:), pointer :: scalarField_fourier !< scalar field fourier representation for fftw complex(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method complex(pReal), private, dimension(:,:,:,:), allocatable :: xi1st !< wave vector field for first derivatives complex(pReal), private, dimension(:,:,:,:), allocatable :: xi2nd !< wave vector field for second derivatives real(pReal), private, dimension(3,3,3,3) :: C_ref !< mechanic reference stiffness real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence (Basic, Basic PETSc) !-------------------------------------------------------------------------------------------------- ! plans for FFTW type(C_PTR), private :: & planTensorForth, & !< FFTW MPI plan P(x) to P(k) planTensorBack, & !< FFTW MPI plan F(k) to F(x) planVectorForth, & !< FFTW MPI plan v(x) to v(k) planVectorBack, & !< FFTW MPI plan v(k) to v(x) planScalarForth, & !< FFTW MPI plan s(x) to s(k) planScalarBack !< FFTW MPI plan s(k) to s(x) !-------------------------------------------------------------------------------------------------- ! variables controlling debugging logical, private :: & debugGeneral, & !< general debugging of spectral solver debugRotation, & !< also printing out results in lab frame debugPETSc !< use some in debug defined options for more verbose PETSc solution !-------------------------------------------------------------------------------------------------- ! derived types type, public :: tSolutionState !< return type of solution from spectral solver variants logical :: converged = .true. logical :: stagConverged = .true. logical :: termIll = .false. integer(pInt) :: iterationsNeeded = 0_pInt end type tSolutionState type, public :: tBoundaryCondition !< set of parameters defining a boundary condition real(pReal), dimension(3,3) :: values = 0.0_pReal real(pReal), dimension(3,3) :: maskFloat = 0.0_pReal logical, dimension(3,3) :: maskLogical = .false. character(len=64) :: myType = 'None' end type tBoundaryCondition type, public :: tLoadCase real(pReal), dimension (3,3) :: rotation = math_I3 !< rotation of BC type(tBoundaryCondition) :: stress, & !< stress BC deformation !< deformation BC (Fdot or L) real(pReal) :: time = 0.0_pReal !< length of increment integer(pInt) :: incs = 0_pInt, & !< number of increments outputfrequency = 1_pInt, & !< frequency of result writes restartfrequency = 0_pInt, & !< frequency of restart writes logscale = 0_pInt !< linear/logarithmic time inc flag logical :: followFormerTrajectory = .true. !< follow trajectory of former loadcase integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:) end type tLoadCase type, public :: tSolutionParams !< @todo use here the type definition for a full loadcase including mask real(pReal), dimension(3,3) :: stress_BC, rotation_BC real(pReal) :: timeinc real(pReal) :: timeincOld real(pReal) :: density end type tSolutionParams type, public :: phaseFieldDataBin !< set of parameters defining a phase field real(pReal) :: diffusion = 0.0_pReal, & !< thermal conductivity mobility = 0.0_pReal, & !< thermal mobility phaseField0 = 0.0_pReal !< homogeneous damage field starting condition logical :: active = .false. character(len=64) :: label = '' end type phaseFieldDataBin enum, bind(c) enumerator :: DERIVATIVE_CONTINUOUS_ID, & DERIVATIVE_CENTRAL_DIFF_ID, & DERIVATIVE_FWBW_DIFF_ID end enum integer(kind(DERIVATIVE_CONTINUOUS_ID)) :: & spectral_derivative_ID public :: & utilities_init, & utilities_updateGamma, & utilities_FFTtensorForward, & utilities_FFTtensorBackward, & utilities_FFTvectorForward, & utilities_FFTvectorBackward, & utilities_FFTscalarForward, & utilities_FFTscalarBackward, & utilities_fourierGammaConvolution, & utilities_fourierGreenConvolution, & utilities_divergenceRMS, & utilities_curlRMS, & utilities_fourierScalarGradient, & utilities_fourierVectorDivergence, & utilities_fourierVectorGradient, & utilities_fourierTensorDivergence, & utilities_maskedCompliance, & utilities_constitutiveResponse, & utilities_calculateRate, & utilities_forwardField, & utilities_updateIPcoords, & FIELD_UNDEFINED_ID, & FIELD_MECH_ID, & FIELD_THERMAL_ID, & FIELD_DAMAGE_ID private :: & utilities_getFreqDerivative external :: & PETScErrorF ! is called in the CHKERRQ macro contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields, sets debug flags, create plans for FFTW !> @details Sets the debug levels for general, divergence, restart, and FFTW from the bitwise coding !> provided by the debug module to logicals. !> Allocate all fields used by FFTW and create the corresponding plans depending on the debug !> level chosen. !> Initializes FFTW. !-------------------------------------------------------------------------------------------------- subroutine utilities_init() #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use IO, only: & IO_error, & IO_warning, & IO_timeStamp, & IO_open_file use numerics, only: & spectral_derivative, & fftw_planner_flag, & fftw_timelimit, & memory_efficient, & petsc_defaultOptions, & petsc_options, & divergence_correction use debug, only: & debug_level, & debug_SPECTRAL, & debug_LEVELBASIC, & debug_SPECTRALDIVERGENCE, & debug_SPECTRALFFTW, & debug_SPECTRALPETSC, & debug_SPECTRALROTATION use debug, only: & PETSCDEBUG use math use mesh, only: & grid, & grid3, & grid3Offset, & geomSize implicit none PetscErrorCode :: ierr integer(pInt) :: i, j, k integer(pInt), dimension(3) :: k_s type(C_PTR) :: & tensorField, & !< field containing data for FFTW in real and fourier space (in place) vectorField, & !< field containing data for FFTW in real space when debugging FFTW (no in place) scalarField !< field containing data for FFTW in real space when debugging FFTW (no in place) integer(C_INTPTR_T), dimension(3) :: gridFFTW integer(C_INTPTR_T) :: alloc_local, local_K, local_K_offset integer(C_INTPTR_T), parameter :: & scalarSize = 1_C_INTPTR_T, & vecSize = 3_C_INTPTR_T, & tensorSize = 9_C_INTPTR_T external :: & PetscOptionsInsertString write(6,'(/,a)') ' <<<+- spectral_utilities init -+>>>' write(6,'(/,a)') ' Eisenlohr et al., International Journal of Plasticity, 46:37–53, 2013' write(6,'(a,/)') ' https://doi.org/10.1016/j.ijplas.2012.09.012' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" !-------------------------------------------------------------------------------------------------- ! set debugging parameters debugGeneral = iand(debug_level(debug_SPECTRAL),debug_LEVELBASIC) /= 0 debugRotation = iand(debug_level(debug_SPECTRAL),debug_SPECTRALROTATION) /= 0 debugPETSc = iand(debug_level(debug_SPECTRAL),debug_SPECTRALPETSC) /= 0 if(debugPETSc) write(6,'(3(/,a),/)') & ' Initializing PETSc with debug options: ', & trim(PETScDebug), & ' add more using the PETSc_Options keyword in numerics.config '; flush(6) call PETScOptionsClear(PETSC_NULL_OPTIONS,ierr) CHKERRQ(ierr) if(debugPETSc) call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(PETSCDEBUG),ierr) CHKERRQ(ierr) call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(petsc_defaultOptions),ierr) CHKERRQ(ierr) call PETScOptionsInsertString(PETSC_NULL_OPTIONS,trim(petsc_options),ierr) CHKERRQ(ierr) grid1Red = grid(1)/2_pInt + 1_pInt wgt = 1.0/real(product(grid),pReal) write(6,'(a,3(i12 ))') ' grid a b c: ', grid write(6,'(a,3(es12.5))') ' size x y z: ', geomSize select case (spectral_derivative) case ('continuous') spectral_derivative_ID = DERIVATIVE_CONTINUOUS_ID case ('central_difference') spectral_derivative_ID = DERIVATIVE_CENTRAL_DIFF_ID case ('fwbw_difference') spectral_derivative_ID = DERIVATIVE_FWBW_DIFF_ID case default call IO_error(892_pInt,ext_msg=trim(spectral_derivative)) end select !-------------------------------------------------------------------------------------------------- ! scale dimension to calculate either uncorrected, dimension-independent, or dimension- and ! resolution-independent divergence if (divergence_correction == 1_pInt) then do j = 1_pInt, 3_pInt if (j /= minloc(geomSize,1) .and. j /= maxloc(geomSize,1)) & scaledGeomSize = geomSize/geomSize(j) enddo elseif (divergence_correction == 2_pInt) then do j = 1_pInt, 3_pInt if ( j /= int(minloc(geomSize/real(grid,pReal),1),pInt) & .and. j /= int(maxloc(geomSize/real(grid,pReal),1),pInt)) & scaledGeomSize = geomSize/geomSize(j)*real(grid(j),pReal) enddo else scaledGeomSize = geomSize endif !-------------------------------------------------------------------------------------------------- ! MPI allocation gridFFTW = int(grid,C_INTPTR_T) alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, & PETSC_COMM_WORLD, local_K, local_K_offset) allocate (xi1st (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension allocate (xi2nd (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension tensorField = fftw_alloc_complex(tensorSize*alloc_local) call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, & 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real tensor representation call c_f_pointer(tensorField, tensorField_fourier, [3_C_INTPTR_T,3_C_INTPTR_T, & gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K]) ! place a pointer for a fourier tensor representation vectorField = fftw_alloc_complex(vecSize*alloc_local) call c_f_pointer(vectorField, vectorField_real, [3_C_INTPTR_T,& 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real vector representation call c_f_pointer(vectorField, vectorField_fourier,[3_C_INTPTR_T,& gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a fourier vector representation scalarField = fftw_alloc_complex(scalarSize*alloc_local) ! allocate data for real representation (no in place transform) call c_f_pointer(scalarField, scalarField_real, & [2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1),gridFFTW(2),local_K]) ! place a pointer for a real scalar representation call c_f_pointer(scalarField, scalarField_fourier, & [ gridFFTW(1)/2_C_INTPTR_T + 1 ,gridFFTW(2),local_K]) ! place a pointer for a fourier scarlar representation !-------------------------------------------------------------------------------------------------- ! tensor MPI fftw plans planTensorForth = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order tensorSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock tensorField_real, tensorField_fourier, & ! input data, output data PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision if (.not. C_ASSOCIATED(planTensorForth)) call IO_error(810, ext_msg='planTensorForth') planTensorBack = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order tensorSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock tensorField_fourier,tensorField_real, & ! input data, output data PETSC_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision if (.not. C_ASSOCIATED(planTensorBack)) call IO_error(810, ext_msg='planTensorBack') !-------------------------------------------------------------------------------------------------- ! vector MPI fftw plans planVectorForth = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order vecSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock vectorField_real, vectorField_fourier, & ! input data, output data PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision if (.not. C_ASSOCIATED(planVectorForth)) call IO_error(810, ext_msg='planVectorForth') planVectorBack = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order vecSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock vectorField_fourier,vectorField_real, & ! input data, output data PETSC_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision if (.not. C_ASSOCIATED(planVectorBack)) call IO_error(810, ext_msg='planVectorBack') !-------------------------------------------------------------------------------------------------- ! scalar MPI fftw plans planScalarForth = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock scalarField_real, scalarField_fourier, & ! input data, output data PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision if (.not. C_ASSOCIATED(planScalarForth)) call IO_error(810, ext_msg='planScalarForth') planScalarBack = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order, no. of transforms scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock scalarField_fourier,scalarField_real, & ! input data, output data PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision if (.not. C_ASSOCIATED(planScalarBack)) call IO_error(810, ext_msg='planScalarBack') !-------------------------------------------------------------------------------------------------- ! general initialization of FFTW (see manual on fftw.org for more details) if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(0_pInt,ext_msg='Fortran to C') ! check for correct precision in C call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation if (debugGeneral) write(6,'(/,a)') ' FFTW initialized'; flush(6) !-------------------------------------------------------------------------------------------------- ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) do k = grid3Offset+1_pInt, grid3Offset+grid3 k_s(3) = k - 1_pInt if(k > grid(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - grid(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 do j = 1_pInt, grid(2) k_s(2) = j - 1_pInt if(j > grid(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - grid(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 do i = 1_pInt, grid1Red k_s(1) = i - 1_pInt ! symmetry, junst running from 0,1,...,N/2,N/2+1 xi2nd(1:3,i,j,k-grid3Offset) = utilities_getFreqDerivative(k_s) ! if divergence_correction is set, frequencies are calculated on unit length where(mod(grid,2)==0 .and. [i,j,k] == grid/2+1 .and. & spectral_derivative_ID == DERIVATIVE_CONTINUOUS_ID) ! for even grids, set the Nyquist Freq component to 0.0 xi1st(1:3,i,j,k-grid3Offset) = cmplx(0.0_pReal,0.0_pReal,pReal) elsewhere xi1st(1:3,i,j,k-grid3Offset) = xi2nd(1:3,i,j,k-grid3Offset) endwhere enddo; enddo; enddo if(memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal)) else ! precalculation of gamma_hat field allocate (gamma_hat(3,3,3,3,grid1Red,grid(2),grid3), source = cmplx(0.0_pReal,0.0_pReal,pReal)) endif end subroutine utilities_init !-------------------------------------------------------------------------------------------------- !> @brief updates reference stiffness and potentially precalculated gamma operator !> @details Sets the current reference stiffness to the stiffness given as an argument. !> If the gamma operator is precalculated, it is calculated with this stiffness. !> In case of an on-the-fly calculation, only the reference stiffness is updated. !> Also writes out the current reference stiffness for restart. !-------------------------------------------------------------------------------------------------- subroutine utilities_updateGamma(C,saveReference) use IO, only: & IO_write_jobRealFile use numerics, only: & memory_efficient, & worldrank use mesh, only: & grid3Offset, & grid3,& grid use math, only: & math_det33, & math_invert implicit none real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness logical , intent(in) :: saveReference !< save reference stiffness to file for restart complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx real(pReal), dimension(6,6) :: matA, matInvA integer(pInt) :: & i, j, k, & l, m, n, o logical :: err C_ref = C if (saveReference) then if (worldrank == 0_pInt) then write(6,'(/,a)') ' writing reference stiffness to file' flush(6) call IO_write_jobRealFile(777,'C_ref',size(C_ref)) write (777,rec=1) C_ref; close(777) endif endif if(.not. memory_efficient) then gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A do k = grid3Offset+1_pInt, grid3Offset+grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red if (any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-grid3Offset))*xi1st(m,i,j,k-grid3Offset) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx) matA(1:3,1:3) = real(temp33_complex); matA(4:6,4:6) = real(temp33_complex) matA(1:3,4:6) = aimag(temp33_complex); matA(4:6,1:3) = -aimag(temp33_complex) if (abs(math_det33(matA(1:3,1:3))) > 1e-16) then call math_invert(6_pInt, matA, matInvA, err) temp33_complex = cmplx(matInvA(1:3,1:3),matInvA(1:3,4:6),pReal) forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt) & gamma_hat(l,m,n,o,i,j,k-grid3Offset) = temp33_complex(l,n)* & conjg(-xi1st(o,i,j,k-grid3Offset))*xi1st(m,i,j,k-grid3Offset) endif endif enddo; enddo; enddo endif end subroutine utilities_updateGamma !-------------------------------------------------------------------------------------------------- !> @brief forward FFT of data in field_real to field_fourier !> @details Does an unweighted filtered FFT transform from real to complex !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTtensorForward() implicit none !-------------------------------------------------------------------------------------------------- ! doing the tensor FFT call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier) end subroutine utilities_FFTtensorForward !-------------------------------------------------------------------------------------------------- !> @brief backward FFT of data in field_fourier to field_real !> @details Does an weighted inverse FFT transform from complex to real !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTtensorBackward() implicit none call fftw_mpi_execute_dft_c2r(planTensorBack,tensorField_fourier,tensorField_real) tensorField_real = tensorField_real * wgt ! normalize the result by number of elements end subroutine utilities_FFTtensorBackward !-------------------------------------------------------------------------------------------------- !> @brief forward FFT of data in scalarField_real to scalarField_fourier !> @details Does an unweighted filtered FFT transform from real to complex !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTscalarForward() implicit none !-------------------------------------------------------------------------------------------------- ! doing the scalar FFT call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier) end subroutine utilities_FFTscalarForward !-------------------------------------------------------------------------------------------------- !> @brief backward FFT of data in scalarField_fourier to scalarField_real !> @details Does an weighted inverse FFT transform from complex to real !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTscalarBackward() implicit none call fftw_mpi_execute_dft_c2r(planScalarBack,scalarField_fourier,scalarField_real) scalarField_real = scalarField_real * wgt ! normalize the result by number of elements end subroutine utilities_FFTscalarBackward !-------------------------------------------------------------------------------------------------- !> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed !> @details Does an unweighted filtered FFT transform from real to complex. !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTvectorForward() implicit none !-------------------------------------------------------------------------------------------------- ! doing the vector FFT call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier) end subroutine utilities_FFTvectorForward !-------------------------------------------------------------------------------------------------- !> @brief backward FFT of data in field_fourier to field_real !> @details Does an weighted inverse FFT transform from complex to real !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTvectorBackward() implicit none call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real) vectorField_real = vectorField_real * wgt ! normalize the result by number of elements end subroutine utilities_FFTvectorBackward !-------------------------------------------------------------------------------------------------- !> @brief doing convolution gamma_hat * field_real, ensuring that average value = fieldAim !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierGammaConvolution(fieldAim) use numerics, only: & memory_efficient use math, only: & math_det33, & math_invert use mesh, only: & grid3, & grid, & grid3Offset implicit none real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx real(pReal) :: matA(6,6), matInvA(6,6) integer(pInt) :: & i, j, k, & l, m, n, o logical :: err write(6,'(/,a)') ' ... doing gamma convolution ...............................................' flush(6) !-------------------------------------------------------------------------------------------------- ! do the actual spectral method calculation (mechanical equilibrium) memoryEfficient: if(memory_efficient) then do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red if (any([i,j,k+grid3Offset] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx) matA(1:3,1:3) = real(temp33_complex); matA(4:6,4:6) = real(temp33_complex) matA(1:3,4:6) = aimag(temp33_complex); matA(4:6,1:3) = -aimag(temp33_complex) if (abs(math_det33(matA(1:3,1:3))) > 1e-16) then call math_invert(6_pInt, matA, matInvA, err) temp33_complex = cmplx(matInvA(1:3,1:3),matInvA(1:3,4:6),pReal) forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt) & gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k) else gamma_hat(1:3,1:3,1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal) endif forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k)) tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex endif enddo; enddo; enddo else memoryEfficient do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * tensorField_fourier(1:3,1:3,i,j,k)) tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex enddo; enddo; enddo endif memoryEfficient if (grid3Offset == 0_pInt) & tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) end subroutine utilities_fourierGammaConvolution !-------------------------------------------------------------------------------------------------- !> @brief doing convolution DamageGreenOp_hat * field_real !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT) use math, only: & math_mul33x3, & PI use mesh, only: & grid, & grid3 implicit none real(pReal), dimension(3,3), intent(in) :: D_ref !< desired average value of the field after convolution real(pReal), intent(in) :: mobility_ref, deltaT !< desired average value of the field after convolution complex(pReal) :: GreenOp_hat integer(pInt) :: i, j, k !-------------------------------------------------------------------------------------------------- ! do the actual spectral method calculation do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal)/ & (cmplx(mobility_ref,0.0_pReal,pReal) + cmplx(deltaT,0.0_pReal)*& sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) ! why not use dot_product scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat enddo; enddo; enddo end subroutine utilities_fourierGreenConvolution !-------------------------------------------------------------------------------------------------- !> @brief calculate root mean square of divergence of field_fourier !-------------------------------------------------------------------------------------------------- real(pReal) function utilities_divergenceRMS() use IO, only: & IO_error use mesh, only: & geomSize, & grid, & grid3 implicit none integer(pInt) :: i, j, k, ierr complex(pReal), dimension(3) :: rescaledGeom write(6,'(/,a)') ' ... calculating divergence ................................................' flush(6) rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal) !-------------------------------------------------------------------------------------------------- ! calculating RMS divergence criterion in Fourier space utilities_divergenceRMS = 0.0_pReal do k = 1_pInt, grid3; do j = 1_pInt, grid(2) do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice. utilities_divergenceRMS = utilities_divergenceRMS & + 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector +sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),& conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)) enddo utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1) + sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), & conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) & + sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) & + sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), & conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) enddo; enddo if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_divergenceRMS') utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space end function utilities_divergenceRMS !-------------------------------------------------------------------------------------------------- !> @brief calculate max of curl of field_fourier !-------------------------------------------------------------------------------------------------- real(pReal) function utilities_curlRMS() use IO, only: & IO_error use mesh, only: & geomSize, & grid, & grid3 implicit none integer(pInt) :: i, j, k, l, ierr complex(pReal), dimension(3,3) :: curl_fourier complex(pReal), dimension(3) :: rescaledGeom write(6,'(/,a)') ' ... calculating curl ......................................................' flush(6) rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal) !-------------------------------------------------------------------------------------------------- ! calculating max curl criterion in Fourier space utilities_curlRMS = 0.0_pReal do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 2_pInt, grid1Red - 1_pInt do l = 1_pInt, 3_pInt curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) & -tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3)) curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3) & -tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1)) curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1) & -tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2)) enddo utilities_curlRMS = utilities_curlRMS & +2.0_pReal*sum(real(curl_fourier)**2.0_pReal+aimag(curl_fourier)**2.0_pReal) ! Has somewhere a conj. complex counterpart. Therefore count it twice. enddo do l = 1_pInt, 3_pInt curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) & -tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3)) curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3) & -tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1)) curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1) & -tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2)) enddo utilities_curlRMS = utilities_curlRMS & + sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1) do l = 1_pInt, 3_pInt curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) & -tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3)) curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) & -tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1)) curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) & -tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2)) enddo utilities_curlRMS = utilities_curlRMS & + sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1) enddo; enddo call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_curlRMS') utilities_curlRMS = sqrt(utilities_curlRMS) * wgt if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 end function utilities_curlRMS !-------------------------------------------------------------------------------------------------- !> @brief calculates mask compliance tensor used to adjust F to fullfill stress BC !-------------------------------------------------------------------------------------------------- function utilities_maskedCompliance(rot_BC,mask_stress,C) use, intrinsic :: & IEEE_arithmetic use IO, only: & IO_error use math, only: & math_Plain3333to99, & math_plain99to3333, & math_rotate_forward3333, & math_rotate_forward33, & math_invert implicit none real(pReal), dimension(3,3,3,3) :: utilities_maskedCompliance !< masked compliance real(pReal), intent(in) , dimension(3,3,3,3) :: C !< current average stiffness real(pReal), intent(in) , dimension(3,3) :: rot_BC !< rotation of load frame logical, intent(in), dimension(3,3) :: mask_stress !< mask of stress BC integer(pInt) :: j, k, m, n logical, dimension(9) :: mask_stressVector real(pReal), dimension(9,9) :: temp99_Real integer(pInt) :: size_reduced = 0_pInt real(pReal), dimension(:,:), allocatable :: & s_reduced, & !< reduced compliance matrix (depending on number of stress BC) c_reduced, & !< reduced stiffness (depending on number of stress BC) sTimesC !< temp variable to check inversion logical :: errmatinv character(len=1024):: formatString mask_stressVector = reshape(transpose(mask_stress), [9]) size_reduced = int(count(mask_stressVector), pInt) if(size_reduced > 0_pInt )then allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal) allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal) allocate (sTimesC(size_reduced,size_reduced), source =0.0_pReal) temp99_Real = math_Plain3333to99(math_rotate_forward3333(C,rot_BC)) if(debugGeneral) then write(6,'(/,a)') ' ... updating masked compliance ............................................' write(6,'(/,a,/,9(9(2x,f12.7,1x)/))',advance='no') ' Stiffness C (load) / GPa =',& transpose(temp99_Real)*1.0e-9_pReal flush(6) endif k = 0_pInt ! calculate reduced stiffness do n = 1_pInt,9_pInt if(mask_stressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(mask_stressVector(m)) then j = j + 1_pInt c_reduced(k,j) = temp99_Real(n,m) endif; enddo; endif; enddo call math_invert(size_reduced, c_reduced, s_reduced, errmatinv) ! invert reduced stiffness if (any(IEEE_is_NaN(s_reduced))) errmatinv = .true. if (errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance') temp99_Real = 0.0_pReal ! fill up compliance with zeros k = 0_pInt do n = 1_pInt,9_pInt if(mask_stressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(mask_stressVector(m)) then j = j + 1_pInt temp99_Real(n,m) = s_reduced(k,j) endif; enddo; endif; enddo !-------------------------------------------------------------------------------------------------- ! check if inversion was successful sTimesC = matmul(c_reduced,s_reduced) do m=1_pInt, size_reduced do n=1_pInt, size_reduced errmatinv = errmatinv & .or. (m==n .and. abs(sTimesC(m,n)-1.0_pReal) > 1.0e-12_pReal) & ! diagonal elements of S*C should be 1 .or. (m/=n .and. abs(sTimesC(m,n)) > 1.0e-12_pReal) ! off-diagonal elements of S*C should be 0 enddo enddo if (debugGeneral .or. errmatinv) then write(formatString, '(i2)') size_reduced formatString = '(/,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))' write(6,trim(formatString),advance='no') ' C * S (load) ', & transpose(matmul(c_reduced,s_reduced)) write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced) if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance') endif deallocate(c_reduced) deallocate(s_reduced) deallocate(sTimesC) else temp99_real = 0.0_pReal endif if(debugGeneral) then write(6,'(/,a,/,9(9(2x,f10.5,1x)/),/)',advance='no') & ' Masked Compliance (load) * GPa =', transpose(temp99_Real)*1.0e9_pReal flush(6) endif utilities_maskedCompliance = math_Plain99to3333(temp99_Real) end function utilities_maskedCompliance !-------------------------------------------------------------------------------------------------- !> @brief calculate scalar gradient in fourier field !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierScalarGradient() use mesh, only: & grid3, & grid implicit none integer(pInt) :: i, j, k vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) & vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k) end subroutine utilities_fourierScalarGradient !-------------------------------------------------------------------------------------------------- !> @brief calculate vector divergence in fourier field !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierVectorDivergence() use mesh, only: & grid3, & grid implicit none integer(pInt) :: i, j, k scalarField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) & scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k) + & sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k))) end subroutine utilities_fourierVectorDivergence !-------------------------------------------------------------------------------------------------- !> @brief calculate vector gradient in fourier field !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierVectorGradient() use mesh, only: & grid3, & grid implicit none integer(pInt) :: i, j, k, m, n tensorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k) enddo; enddo enddo; enddo; enddo end subroutine utilities_fourierVectorGradient !-------------------------------------------------------------------------------------------------- !> @brief calculate tensor divergence in fourier field !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierTensorDivergence() use mesh, only: & grid3, & grid implicit none integer(pInt) :: i, j, k, m, n vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt vectorField_fourier(m,i,j,k) = & vectorField_fourier(m,i,j,k) + & tensorField_fourier(m,n,i,j,k)*conjg(-xi1st(n,i,j,k)) enddo; enddo enddo; enddo; enddo end subroutine utilities_fourierTensorDivergence !-------------------------------------------------------------------------------------------------- !> @brief calculate constitutive response from materialpoint_F0 to F during timeinc !-------------------------------------------------------------------------------------------------- subroutine utilities_constitutiveResponse(P,P_av,C_volAvg,C_minmaxAvg,& F,timeinc,rotation_BC) use IO, only: & IO_error use debug, only: & debug_reset, & debug_info use math, only: & math_rotate_forward33, & math_det33 use mesh, only: & grid,& grid3 use homogenization, only: & materialpoint_F, & materialpoint_P, & materialpoint_dPdF, & materialpoint_stressAndItsTangent implicit none real(pReal),intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness real(pReal),intent(out), dimension(3,3) :: P_av !< average PK stress real(pReal),intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: F !< deformation gradient target !< previous deformation gradient real(pReal), intent(in) :: timeinc !< loading time real(pReal), intent(in), dimension(3,3) :: rotation_BC !< rotation of load frame integer(pInt) :: & j,k,ierr real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet write(6,'(/,a)') ' ... evaluating constitutive response ......................................' flush(6) materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3]) ! set materialpoint target F to estimated field !-------------------------------------------------------------------------------------------------- ! calculate bounds of det(F) and report if(debugGeneral) then defgradDetMax = -huge(1.0_pReal) defgradDetMin = +huge(1.0_pReal) do j = 1_pInt, product(grid(1:2))*grid3 defgradDet = math_det33(materialpoint_F(1:3,1:3,1,j)) defgradDetMax = max(defgradDetMax,defgradDet) defgradDetMin = min(defgradDetMin,defgradDet) end do write(6,'(a,1x,es11.4)') ' max determinant of deformation =', defgradDetMax write(6,'(a,1x,es11.4)') ' min determinant of deformation =', defgradDetMin flush(6) endif call debug_reset() ! this has no effect on rank >0 call materialpoint_stressAndItsTangent(.true.,timeinc) ! calculate P field P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3]) P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) if (debugRotation) & write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',& transpose(P_av)*1.e-6_pReal P_av = math_rotate_forward33(P_av,rotation_BC) write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',& transpose(P_av)*1.e-6_pReal flush(6) max_dPdF = 0.0_pReal max_dPdF_norm = 0.0_pReal min_dPdF = huge(1.0_pReal) min_dPdF_norm = huge(1.0_pReal) do k = 1_pInt, product(grid(1:2))*grid3 if (max_dPdF_norm < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then max_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k) max_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal) endif if (min_dPdF_norm > sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then min_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k) min_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal) endif end do call MPI_Allreduce(MPI_IN_PLACE,max_dPdF,81,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr) if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce max') call MPI_Allreduce(MPI_IN_PLACE,min_dPdF,81,MPI_DOUBLE,MPI_MIN,PETSC_COMM_WORLD,ierr) if (ierr /= 0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce min') C_minmaxAvg = 0.5_pReal*(max_dPdF + min_dPdF) C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5) * wgt call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call debug_info() ! this has no effect on rank >0 end subroutine utilities_constitutiveResponse !-------------------------------------------------------------------------------------------------- !> @brief calculates forward rate, either guessing or just add delta/timeinc !-------------------------------------------------------------------------------------------------- pure function utilities_calculateRate(heterogeneous,field0,field,dt,avRate) use mesh, only: & grid3, & grid implicit none real(pReal), intent(in), dimension(3,3) :: avRate !< homogeneous addon real(pReal), intent(in) :: & dt !< timeinc between field0 and field logical, intent(in) :: & heterogeneous !< calculate field of rates real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: & field0, & !< data of previous step field !< data of current step real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: & utilities_calculateRate if (heterogeneous) then utilities_calculateRate = (field-field0) / dt else utilities_calculateRate = spread(spread(spread(avRate,3,grid(1)),4,grid(2)),5,grid3) endif end function utilities_calculateRate !-------------------------------------------------------------------------------------------------- !> @brief forwards a field with a pointwise given rate, if aim is given, !> ensures that the average matches the aim !-------------------------------------------------------------------------------------------------- function utilities_forwardField(timeinc,field_lastInc,rate,aim) use mesh, only: & grid3, & grid implicit none real(pReal), intent(in) :: & timeinc !< timeinc of current step real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: & field_lastInc, & !< initial field rate !< rate by which to forward real(pReal), intent(in), optional, dimension(3,3) :: & aim !< average field value aim real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: & utilities_forwardField real(pReal), dimension(3,3) :: fieldDiff !< - aim PetscErrorCode :: ierr utilities_forwardField = field_lastInc + rate*timeinc if (present(aim)) then !< correct to match average fieldDiff = sum(sum(sum(utilities_forwardField,dim=5),dim=4),dim=3)*wgt call MPI_Allreduce(MPI_IN_PLACE,fieldDiff,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) fieldDiff = fieldDiff - aim utilities_forwardField = utilities_forwardField - & spread(spread(spread(fieldDiff,3,grid(1)),4,grid(2)),5,grid3) endif end function utilities_forwardField !-------------------------------------------------------------------------------------------------- !> @brief calculates filter for fourier convolution depending on type given in numerics.config !> @details this is the full operator to calculate derivatives, i.e. 2 \pi i k for the ! standard approach !-------------------------------------------------------------------------------------------------- pure function utilities_getFreqDerivative(k_s) use math, only: & PI use mesh, only: & geomSize, & grid implicit none integer(pInt), intent(in), dimension(3) :: k_s !< indices of frequency complex(pReal), dimension(3) :: utilities_getFreqDerivative select case (spectral_derivative_ID) case (DERIVATIVE_CONTINUOUS_ID) utilities_getFreqDerivative = cmplx(0.0_pReal, 2.0_pReal*PI*real(k_s,pReal)/geomSize,pReal) case (DERIVATIVE_CENTRAL_DIFF_ID) utilities_getFreqDerivative = cmplx(0.0_pReal, sin(2.0_pReal*PI*real(k_s,pReal)/real(grid,pReal)), pReal)/ & cmplx(2.0_pReal*geomSize/real(grid,pReal), 0.0_pReal, pReal) case (DERIVATIVE_FWBW_DIFF_ID) utilities_getFreqDerivative(1) = & cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) - 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & cmplx(cos(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)) + 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & cmplx(4.0_pReal*geomSize(1)/real(grid(1),pReal), 0.0_pReal, pReal) utilities_getFreqDerivative(2) = & cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & cmplx(cos(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)) - 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & cmplx(4.0_pReal*geomSize(2)/real(grid(2),pReal), 0.0_pReal, pReal) utilities_getFreqDerivative(3) = & cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* & cmplx(cos(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)) + 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* & cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) - 1.0_pReal, & sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ & cmplx(4.0_pReal*geomSize(3)/real(grid(3),pReal), 0.0_pReal, pReal) end select end function utilities_getFreqDerivative !-------------------------------------------------------------------------------------------------- !> @brief calculate coordinates in current configuration for given defgrad field ! using integration in Fourier space. Similar as in mesh.f90, but using data already defined for ! convolution !-------------------------------------------------------------------------------------------------- subroutine utilities_updateIPcoords(F) use prec, only: & cNeq use IO, only: & IO_error use math, only: & math_mul33x3 use mesh, only: & grid, & grid3, & grid3Offset, & geomSize, & mesh_ipCoordinates implicit none real(pReal), dimension(3,3,grid(1),grid(2),grid3), intent(in) :: F integer(pInt) :: i, j, k, m, ierr real(pReal), dimension(3) :: step, offset_coords real(pReal), dimension(3,3) :: Favg !-------------------------------------------------------------------------------------------------- ! integration in Fourier space tensorField_real = 0.0_pReal tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F call utilities_FFTtensorForward() call utilities_fourierTensorDivergence() do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red if (any(cNeq(xi1st(1:3,i,j,k),cmplx(0.0_pReal,0.0_pReal)))) & vectorField_fourier(1:3,i,j,k) = vectorField_fourier(1:3,i,j,k)/ & sum(conjg(-xi1st(1:3,i,j,k))*xi1st(1:3,i,j,k)) enddo; enddo; enddo call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real) !-------------------------------------------------------------------------------------------------- ! average F if (grid3Offset == 0_pInt) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr) if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='update_IPcoords') !-------------------------------------------------------------------------------------------------- ! add average to fluctuation and put (0,0,0) on (0,0,0) step = geomSize/real(grid, pReal) if (grid3Offset == 0_pInt) offset_coords = vectorField_real(1:3,1,1,1) call MPI_Bcast(offset_coords,3,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr) if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='update_IPcoords') offset_coords = math_mul33x3(Favg,step/2.0_pReal) - offset_coords m = 1_pInt do k = 1_pInt,grid3; do j = 1_pInt,grid(2); do i = 1_pInt,grid(1) mesh_ipCoordinates(1:3,1,m) = vectorField_real(1:3,i,j,k) & + offset_coords & + math_mul33x3(Favg,step*real([i,j,k+grid3Offset]-1_pInt,pReal)) m = m+1_pInt enddo; enddo; enddo end subroutine utilities_updateIPcoords end module spectral_utilities